The pH of the resulting solution after adding 0.0248 moles of hydrochloric acid to the buffer containing 0.348 M ammonium chloride and 0.339 M ammonia is approximately 7.967.
To calculate the pH of the resulting solution after adding hydrochloric acid to a buffer containing 0.348 M ammonium chloride and 0.339 M ammonia, follow these steps:
1. Determine the initial moles of ammonium chloride (NH₄Cl) and ammonia (NH₃) in the solution:
- Moles of NH₄Cl = (0.348 M) x (0.125 L) = 0.0435 moles
- Moles of NH₃ = (0.339 M) x (0.125 L) = 0.042375 moles
2. Calculate the moles of NH₄Cl and NH₃ after the reaction with HCl:
- Moles of HCl added = 0.0248 moles
- The reaction between NH₃ and HCl produces NH₄Cl: NH₃ + HCl → NH₄Cl
- Moles of NH₄Cl after reaction = 0.0435 moles (initial) + 0.0248 moles (from HCl) = 0.0683 moles
- Moles of NH₃ after reaction = 0.042375 moles (initial) - 0.0248 moles (reacted with HCl) = 0.017575 moles
3. Calculate the new concentrations of NH₄Cl and NH₃:
- [NH₄Cl] = 0.0683 moles / 0.125 L = 0.5464 M
- [NH₃] = 0.017575 moles / 0.125 L = 0.1406 M
4. Use the Henderson-Hasselbalch equation to find the pH:
- pH = pKₐ + log ([NH₃] / [NH₄⁺])
- The pKₐ of ammonia (NH₃) is 9.25
- pH = 9.25 + log (0.1406 / 0.5464) = 9.25 - 1.283 = 7.967
The pH of the resulting solution after adding 0.0248 moles of hydrochloric acid to the buffer containing 0.348 M ammonium chloride and 0.339 M ammonia is approximately 7.967.
To know more about Henderson-Hasselbalch equation :
https://brainly.com/question/13423434
#SPJ11
On which beach(es) would you create a turtle refuge? Cite evidence to support your response.
Turtle refuges are usually created on beaches where turtles lay their eggs, hatch, and return to the sea. Therefore, beaches that are known as nesting grounds for sea turtles may be suitable for creating a turtle refuge.
In general, turtle nesting sites are characterized by sandy beaches, dunes, and undisturbed vegetation. Female sea turtles come ashore to lay their eggs on sandy beaches, and the hatchlings make their way to the ocean once they emerge from the nest.
Turtle refuges provide protection for these nesting sites, allowing the turtles to lay their eggs and for the hatchlings to safely make their way to the ocean.
It is important to note that the location of a turtle refuge should be based on careful research and consideration of a variety of factors, such as the species of turtles that inhabit the area, the presence of human and natural threats to the nesting sites, and the availability of resources and support for the conservation efforts.
For more question on Turtle click on
https://brainly.com/question/26173544
#SPJ11
What are two types of matter that are considered pure?.
Answer: Elements and compounds are both examples of pure substances.
Explanation:
4. A gas has a volume of 4 liters at 50 ℃. What will its volume be (in liters) at 100℃?
The volume of the gas at 100℃ would be 4.64 liters, assuming the pressure remains constant.
We can use the combined gas law, which relates the pressure, volume, and temperature of a gas. The combined gas law formula is: (P1 x V1) / T1 = (P2 x V2) / T2. Where P is the pressure, V is the volume, and T is the temperature. The subscripts 1 and 2 refer to the initial and final states of the gas, respectively.
In this case, we know that the initial volume (V1) is 4 liters and the initial temperature (T1) is 50 ℃. We want to find the final volume (V2) when the temperature is 100℃.To solve for V2, we can rearrange the formula as follows: V2 = (P1 x V1 x T2) / (P2 x T1).We don't know the pressure, but since the problem doesn't mention any changes in pressure, we can assume that it remains constant. Therefore, we can cancel out the P1 and P2 terms.
Plugging in the known values, we get: V2 = (4 L x 373 K) / (323 K) = 4.64 L (rounded to two decimal places)Therefore, the volume of the gas at 100℃ would be 4.64 liters, assuming the pressure remains constant.
For more such question on pressure visit:
#SPJ11
1. How many moles does 8. 19 L of gas at STP represent?
2. How many moles does 21. 7 L of gas at STP represent?
At standard temperature and pressure (STP), 1 mole of any gas occupies 22.4 L of volume. Therefore, 8.19 L of gas at STP represents 0.364 moles and 21.7 L of gas at STP represents 0.969 moles.
Moles are a unit of measurement for the amount of matter present in an object. The number of moles in an object is proportional to the amount of matter present, and it is calculated by dividing the mass of an object by its molar mass. The molar mass of a substance is its molecular mass expressed in grams.
At STP, the number of moles of a gas in a given volume can be calculated by dividing the volume of the gas (in liters) by 22.4. This is because 1 mole of any gas occupies 22.4 L of volume at STP. Therefore, by dividing the volume of the gas by 22.4, the number of moles of gas is obtained.
Know more about Molar mass here
https://brainly.com/question/22997914#
#SPJ11
Will award you points!
Read the chemical equation. N2 + 3H2 – 2NH3 Using the volume ratio, determine how many liters of NH3 is produced if 3. 6 liters of H2 reacts with an excess of N2, if all measurements are taken at the same temperature and pressure? 5. 4 liters 2. 4 liters 1. 8 liters 1. 2 liters
To solve this problem, we need to use the volume ratio from the balanced chemical equation. The ratio tells us that for every 3 liters of [tex]H_2[/tex] that reacts, 2 liters of [tex]NH_3[/tex] are produced.
In this case, we have 3.6 liters of [tex]H_2[/tex] reacting, so we can set up a proportion:
3 L [tex]H_2[/tex] : 2 L [tex]NH_3[/tex] = 3.6 L [tex]H_2[/tex] : x L [tex]NH_3[/tex]
To solve for x (the amount of NH3 produced), we can cross-multiply:
3 L [tex]H_2[/tex] * x L [tex]NH_3[/tex] = 2 L [tex]NH_3[/tex] * 3.6 L [tex]H_2[/tex]
Simplifying, we get:
x = (2 L [tex]NH_3[/tex] * 3.6 L [tex]H_2[/tex] ) / 3 L [tex]H_2[/tex]
x = 2.4 L [tex]NH_3[/tex]
Therefore, the answer is 2.4 liters of [tex]NH_3[/tex] produced if 3.6 liters of [tex]H_2[/tex] reacts with an excess of [tex]N_2[/tex].
To know more about balanced chemical equation:
https://brainly.com/question/11904811
#SPJ11
How many grams are in a sample of 7.9 moles of zinc?
There are 516.682 grams in a sample of 7.9 moles of zinc.
To determine the number of grams in a sample of 7.9 moles of zinc, we need to use the molar mass of zinc. The molar mass of zinc is 65.38 g/mol.
Therefore, to calculate the number of grams in 7.9 moles of zinc, we can multiply 7.9 moles by 65.38 g/mol. The calculation is as follows:
7.9 moles x 65.38 g/mol = 516.682 g
Therefore, there are 516.682 grams in a sample of 7.9 moles of zinc. It's important to remember to always use the molar mass of the element or compound when converting between moles and grams.
To know more about moles refer here: https://brainly.com/question/31563792#
#SPJ11
A compound is made up of 94. 5 g of aluminum and 199. 5 g or fluorine. Determine the empirical formula of the compound.
HELPPPP
To determine the empirical formula of the compound, we need to first find the moles of each element present in the compound:
moles of Al = 94.5 g / 26.98 g/mol = 3.50 mol
moles of F = 199.5 g / 18.99 g/mol = 10.50 mol
Next, we need to find the ratio of the moles of each element in the compound by dividing by the smallest number of moles. In this case, the smallest number of moles is 3.50 mol:
moles of Al = 3.50 mol / 3.50 mol = 1
moles of F = 10.50 mol / 3.50 mol = 3
The empirical formula of the compound is therefore AlF3.
To know more about empirical refer here
https://brainly.com/question/977538#
#SPJ11
If the glaciers melted at a rate of 5% per year, how long will it take 50% of the glaciers to melt?
The surface of a pool table has a perimeter of 26 feet and an area of 40 square feet. What are the dimensions of the pool table?
The dimensions of the pool table with a perimeter of 26 feet and an area of 40 square feet are either 5 feet by 8 feet or 8 feet by 5 feet.
To solve this problem, we need to use some basic geometry formulas. Let's start by using the formula for the perimeter of a rectangle, which is P = 2l + 2w, where l is the length and w is the width.
We know that the perimeter of the pool table is 26 feet, so we can write the equation:
26 = 2l + 2w
Simplifying this equation, we get:
13 = l + w
Next, we can use the formula for the area of a rectangle, which is A = lw, where A is the area.
We know that the area of the pool table is 40 square feet, so we can write the equation:
40 = lw
Now we can use substitution to solve for one of the variables. We can rearrange the perimeter equation to solve for one variable in terms of the other:
l = 13 - w
Then we can substitute this expression for l into the area equation:
40 = (13 - w)w
Expanding this equation, we get:
40 = 13w - w^2
Rearranging and simplifying, we get a quadratic equation:
w^2 - 13w + 40 = 0
We can solve this equation by factoring or using the quadratic formula, which gives us:
w = 5 or w = 8
If w is 5, then l is 8 (using the perimeter equation), and if w is 8, then l is 5. So the dimensions of the pool table are either 5 feet by 8 feet or 8 feet by 5 feet.
In summary, the dimensions of the pool table with a perimeter of 26 feet and an area of 40 square feet are either 5 feet by 8 feet or 8 feet by 5 feet.
To know more about perimeter, visit:
https://brainly.com/question/6465134#
#SPJ11
An ancient gold medallion absorbs 576 J of energy when it is heated, this causes a temperature change of 25. 0 C. What is the mass of the gold medallion?
The mass of the ancient gold medallion is 360 grams.
To calculate the mass of the gold medallion, we need to use the specific heat capacity of gold, which is 0.129 J/g°C. We also need to know the initial temperature of the medallion.
Let's assume the initial temperature of the gold medallion is 20.0°C (room temperature). The heat absorbed by the gold medallion can be calculated using the following formula:
Q = m * c * ΔT
Substituting the given values, we get:
576 J = m * 0.129 J/g°C * 25.0°C
Solving for m, we get:
m = 360 g
To know more about heat capacity, here
brainly.com/question/29766819
#SPJ4
How to find out if a solid, more specifically powdered cement, is acid or alkali?
To determine whether a powdered cement is an acid or an alkali, you can perform a simple pH test using litmus paper or a pH meter.
Acids have a pH value below 7, whereas alkalis have a pH value above 7.
To conduct a pH test using litmus paper, moisten the paper with water, then sprinkle a small amount of the powdered cement onto the paper. The paper will change color based on the pH of the cement. If the paper turns red, the cement is acidic. If it turns blue, the cement is alkaline.
Alternatively, you can use a pH meter to measure the pH of a solution made by mixing a small amount of the powdered cement with water. If the pH is less than 7, the cement is acidic, and if it is greater than 7, the cement is alkaline.
It is important to note that most types of cement are typically slightly alkaline, with a pH value between 8 and 9.5, due to the presence of calcium oxide and other alkali metal oxides in the cement.
To know more about pH test, refer here:
https://brainly.com/question/29551790#
#SPJ11
If 67. 8 moles of gas was measured out into a helium balloon how many molecules would be present within the balloon
Answer: 4.08 x 10^25 molecules
Explanation:
1 mole of a substance contains 6.022×10^23 molecules/atoms of that substance.
therefore:
67.8 x (6.022x10^23) = 4.08x10^25 molecules of helium
Select the statement that reflects a central theme of the atomists.
a. atomists would agree that a butterfly and a caterpillar are one in the same since a caterpillar becomes a butterfly.
b. atomists would agree that epistemology provides a defensible explanation of why a butterfly differs from a caterpillar.
c. atomists would agree that during metamorphosis, a caterpillar ceases to exist and a butterfly is spontaneously created in its place.
d. atomists would agree that a butterfly and a caterpillar exist as a collection of atoms, but their atoms are organized differently
The statement that reflects a central theme of the atomists is: Atomists would agree that a butterfly and a caterpillar exist as a collection of atoms, but their atoms are organized differently.
Atomists believe that everything in the universe is composed of small, indivisible particles called atoms. They assert that the properties of objects, like a butterfly and a caterpillar, are determined by the arrangement and organization of these atoms.
While a butterfly and a caterpillar may share similar atoms, their unique characteristics are due to the differences in how these atoms are arranged within each organism.
This perspective acknowledges the transformation from a caterpillar to a butterfly as a process of reorganization of atoms, rather than the creation or destruction of matter.
To know more about Atomists click on below link:
https://brainly.com/question/5397458#
#SPJ11
1. Calculate the molarity of
6. 3x10-3 mol C2 N14 in 400 mL H₂O
The solution has a Molarity of approx 0.01575 M.
To calculate the molarity of a solution, we use the formula:
Molarity (M) = moles of solute ÷ volume of solution in liters
First, we need to convert the volume of the solution from milliliters to liters:
Volume of solution = 400 mL = 400/1000 L = 0.4 L
Next, we need to calculate the moles of solute:
moles of solute = 6.3 x [tex]10^{-3[/tex] mol
Substituting these values into the formula, we get:
Molarity (M) = 6.3 x[tex]10^{-3[/tex] mol ÷ 0.4 L = 0.01575 M
Therefore, the molarity of the solution is 0.01575 M.
To know more about Molarity, here
brainly.com/question/8732513
#SPJ4
At which point does a planet move most slowly in its orbit , at aphelion or perihelion
At aphelion, when the planet is farthest from the Sun, its velocity is the slowest in its orbit. Conversely, at perihelion, the point in the orbit where the planet is closest to the Sun, the planet moves fastest.
A planet moves most slowly in its orbit at aphelion. Aphelion refers to the point in a planet's orbit where it is farthest from the Sun.
As a planet orbits the Sun, it experiences gravitational attraction, causing it to accelerate as it gets closer to the Sun and decelerate as it moves away.
Aphelion refers to the point in an object's orbit around the Sun where it is farthest from the Sun. It is the point in an object's elliptical orbit where the distance between the object and the Sun is at its maximum.
To learn more about aphelion, follow the link:
https://brainly.com/question/30583998
#SPJ12
A decomposition of hydrogen peroxide into water and oxygen gas is an exothermic reaction. If the temperature is initially 28˚ C, what would you expect to see happen to the final temperature? Explain what is happening in terms of energy of the system and the surroundings.
If the decomposition of hydrogen peroxide into water and oxygen gas is an exothermic reaction, we would expect the final temperature to be lower than the initial temperature of 28˚C.
This is because during an exothermic reaction, energy is released from the system into the surroundings in the form of heat. In other words, the energy of the products (water and oxygen) is lower than the energy of the reactants (hydrogen peroxide), and the excess energy is released into the surroundings.
As a result, the temperature of the surroundings (in this case, the container holding the reaction) will increase, while the temperature of the system (the reactants and products) will decrease. This means that the final temperature of the reaction will be lower than the initial temperature of 28˚C.
Overall, we would expect the reaction to release heat into the surroundings, causing the temperature of the surroundings to increase while the temperature of the system decreases.
If i were to determine how many liters 26 grams of water is, what type of conversion would this be?
The type of conversion that would be required to determine how many liters 26 grams of water is would be a conversion from mass to volume. This is because grams are a unit of mass, while liters are a unit of volume. In order to make this conversion, it is necessary to know the density of water, which is approximately 1 gram per milliliter at room temperature and atmospheric pressure.
To convert 26 grams of water to liters, we need to divide the mass by the density. This gives us:
26 grams / 1 gram per milliliter = 26 milliliters
Since there are 1000 milliliters in a liter, we can further convert this to liters by dividing by 1000:
26 milliliters / 1000 = 0.026 liters
Therefore, 26 grams of water is equivalent to 0.026 liters of water.
In summary, to determine the volume of a given mass of water, we need to use the density of water as a conversion factor. This involves dividing the mass by the density to obtain the volume in milliliters, and then converting this to liters by dividing by 1000.
To know more about mass refer here
https://brainly.com/question/19694949#
#SPJ11
Ammonia reacts with oxygen to yield nitrogen and water.
4NH3(g) + 3O2(g) → 2N2(g) + 6H₂O(l)
Given this chemical equation, as well as the number of moles of the reactant or product
below, determine the number of moles of all remaining reactants and products.
3.0 mol O2
1.0 mol N₂
The number of mole of the remaining reactants and products are
Mole of NH₃ = 4 molesMole of H₂O = 6 molesHow do i determine the mole of reactant and product?We must recognize that reactants are located on the left side of a chemical equation while the products are located on the right side.
With the above information in mind, we shall determine the mole of the reactants and products. This is illustrated below:
4NH₃(g) + 3O₂(g) → 2N₂(g) + 6H₂O(l)
Reactants:
Mole of NH₃ = 4 molesMole of O₂ = 3 molesProducts
Mole of N₂ = 2 molesMole of H₂O = 6 molesThus, the moles of the remaining reactants and products are:
Mole of NH₃ = 4 molesMole of H₂O = 6 molesLearn more about mole:
https://brainly.com/question/18265914
#SPJ1
A 100ml sample of 0.40m hydrofluoric acid is mixed with 100ml of 0.40m lithium hydroxide. will the ph of the final solution be less than 7, equal to 7, or greater than 7
The pH of the final solution will be equal to 7.
When 100 mL of 0.40 M hydrofluoric acid (a weak acid) is mixed with 100 mL of 0.40 M lithium hydroxide (a strong base), the reaction can be represented as:
HF + LiOH → LiF + H₂O
As both solutions have equal concentrations and volumes, they will completely neutralize each other. The product, LiF, is a soluble salt and will dissociate into Li+ and F- ions in water.
Since the number of moles of H+ and OH- ions is the same in the reaction, they will react to form water (H₂O), resulting in a neutral solution with a pH of 7. The formation of water from equal amounts of H⁺ and OH⁻ ions indicates that the solution is neither acidic nor basic, thus leading to a pH of 7.
To know more about weak acid click on below link:
https://brainly.com/question/22104949#
#SPJ11
Calculate the heat energy transferred to 2. 3g of copper, which has a specific heat of 0. 385 J/g·°C, that is heated from 23. 0°C to 174. 0°C. (Enter the answer rounded to two decimal places with a space between the number and unit, ex. : 145. 23 J)
The heat energy transferred to 2.3g of copper is 133.01 J.
To calculate the heat energy transferred to the copper, we can use the formula:
q = mcΔT
where q is the heat energy transferred, m is the mass of the substance (2.3 g), c is the specific heat capacity (0.385 J/g·°C), and ΔT is the change in temperature (174.0°C - 23.0°C).
And;
ΔT = 174.0°C - 23.0°C = 151.0°C
Now, plug the values into the formula:
q = (2.3 g) × (0.385 J/g·°C) × (151.0°C)
q = 133.0085 J
Round the answer to two decimal places:
q = 133.01 J
To know more about specific heat capacity, click below.
https://brainly.com/question/22729342
#SPJ11
2Al (s) + 3Cl2 (g) --> 2AlCl3 (s) (balanced)
When 52 grams of chlorine gas react, the actual yield is 42. 5 grams, what is the
percent yield?
The percent yield for the reaction is approximately is 65.12%.
To calculate the percent yield, we need to first find the theoretical yield and then compare it to the actual yield. Here's the solution:
1. Calculate the moles of Cl2:
52 g Cl2 * (1 mol Cl2 / 70.9 g Cl2) = 0.733 mol Cl2
2. Use the stoichiometry of the balanced equation:
(0.733 mol Cl2) * (2 mol AlCl3 / 3 mol Cl2) = 0.489 mol AlCl3
3. Find the theoretical yield:
(0.489 mol AlCl3) * (133.3 g AlCl3 / 1 mol AlCl3) = 65.2 g AlCl3 (theoretical yield)
4. Calculate the percent yield:
(42.5 g AlCl3 (actual yield) / 65.2 g AlCl3 (theoretical yield)) * 100 = 65.12%
The percent yield for the reaction is approximately 65.12%.
Know more about Percent Yield here:
https://brainly.com/question/1704278
#SPJ11
Determine the pressure change when a constant volume of gas at 2.50
atm is heated from 30.0 °C to 40.0 °C.
Answer:
0.08 atm
Explanation:
The pressure change of a gas at constant volume can be determined using the ideal gas law:
PV = nRT
Where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
Since the volume is constant, we can simplify the ideal gas law to:
P = (nRT) / V
The number of moles and the gas constant are constant for a given sample of gas, so we can further simplify to:
P1 / T1 = P2 / T2
Where P1 and T1 are the initial pressure and temperature, and P2 and T2 are the final pressure and temperature.
Plugging in the given values:
P1 = 2.50 atm
T1 = 30.0 + 273.15 = 303.15 K
T2 = 40.0 + 273.15 = 313.15 K
P2 = (P1 * T2) / T1
P2 = (2.50 atm * 313.15 K) / 303.15 K
P2 = 2.58 atm
Therefore, the pressure change when a constant volume of gas at 2.50 atm is heated from 30.0 °C to 40.0 °C is 0.08 atm (2.58 atm - 2.50 atm).
Answer:
Explanation: 0.08
I need help with this question PLEASE
The oxidation number approach, commonly referred to as the oxidation states, keeps track of the electrons obtained during reduction and the electrons lost during oxidation.
Thus, Each atom in a charged or neutral molecule is given an oxidation number. Oxidation takes place whenever the oxidation number rises. Reduction happens when the oxidation number goes down. The total charge of a chemical is equal to the sum of all of its oxidation numbers.
The roles of oxidation and reduction is the only foolproof method for balancing a redox equation. Then you achieve equilibrium by bringing the electron gain and loss into balance.
The oxidation numbers of all atoms are determined using the oxidation number method. The altered atoms are then multiplied by small whole numbers.
Thus, The oxidation number approach, commonly referred to as the oxidation states, keeps track of the electrons obtained during reduction and the electrons lost during oxidation.
Learn more about Oxidation number, refer to the link:
https://brainly.com/question/29257381
#SPJ1
Carbon and Silicon are in the same group in the periodic table. Silicon oxide melts at 2440 degrees Celsius while solid carbon dioxide sublimes at -70 degrees Celsius. In terms of structure and bonding, explain the difference
Answer:
Carbon and silicon are both in Group 14 of the periodic table, which means they have similar electronic configurations and therefore similar bonding properties. However, the difference in melting and sublimation temperatures of their oxides, silicon oxide and solid carbon dioxide, respectively, can be attributed to differences in their structure and bonding.
Silicon oxide (SiO2) has a giant covalent structure, in which each silicon atom is covalently bonded to four oxygen atoms and each oxygen atom is covalently bonded to two silicon atoms. This gives rise to a three-dimensional network of strong covalent bonds, which requires a large amount of energy to be broken. Therefore, silicon oxide has a high melting point of 2440°C because a lot of energy is required to overcome the strong covalent bonds and melt the solid.
On the other hand, solid carbon dioxide (CO2) has a molecular structure, in which each carbon atom is double bonded to two oxygen atoms. The carbon dioxide molecules are held together by weak intermolecular forces, such as Van der Waals forces, which are much weaker than the strong covalent bonds present in silicon oxide. As a result, solid carbon dioxide can sublime at -70°C, without melting into a liquid, because the intermolecular forces can be overcome by relatively low energy input.
In summary, the difference in melting and sublimation temperatures of silicon oxide and solid carbon dioxide can be explained by the difference in their bonding types and structures. Silicon oxide has a giant covalent structure with strong covalent bonds that require a large amount of energy to break, resulting in a high melting point. Solid carbon dioxide has a molecular structure held together by weak intermolecular forces, which can be overcome by relatively low energy input, resulting in a low sublimation point.
What is the molality of a solution containing 4. 0 grams
of NaCl dissolved in 3000 grams of water?
0.0228 mol/kg is the molality of a solution containing 4. 0 grams of NaCl dissolved in 3000 grams of water.
To calculate the molality of a solution, we need to first convert the mass of the solute (NaCl) to moles and then divide by the mass of the solvent (water) in kilograms.
The molar mass of NaCl is 58.44 g/mol, so 4.0 grams of NaCl is equal to 0.0684 moles of NaCl.
The mass of water is 3000 grams or 3.0 kg.
Therefore, the molality of the solution is:
molality = moles of solute / mass of solvent in kg
molality = 0.0684 moles / 3.0 kg
molality = 0.0228 mol/kg
So the molality of the solution is 0.0228 mol/kg.
To know more about the molality refer here :
https://brainly.com/question/4580605#
#SPJ11
If a piece of aluminum has a heat capacity of 314 j/°c, how much will its temperature rise when it absorbs 8,291 j of heat?
We can use the formula Q = mcΔT to solve this problem, where Q is the amount of heat absorbed by the aluminum, m is the mass of the aluminum, c is its specific heat capacity, and ΔT is the change in temperature.
However, since we are not given the mass of the aluminum, we cannot solve for ΔT directly using this formula.
Instead, we can use the fact that the specific heat capacity of aluminum is given as 314 j/°c, which means that it takes 314 j of heat to raise the temperature of 1 gram of aluminum by 1 degree Celsius.
To find the mass of the aluminum, we can divide the total amount of heat absorbed by the specific heat capacity of aluminum:
m = Q / (c * ΔT)
Solving for ΔT, we get:
ΔT = Q / (m * c)
Substituting the given values, we have:
ΔT = 8,291 j / (m * 314 j/°c)
We need to find the value of ΔT, so we still need to solve for m. Without additional information, we cannot do so directly.
Therefore, we cannot provide a numerical answer to this problem without knowing the mass of the aluminum.
To know more about aluminum refer here
https://brainly.com/question/28989771#
#SPJ11
1.
What is the boiling point of a solution prepared by dissolving 2. 50 g of biphenyl (C12 H10)
in 85. 0 g of benzene. The molecular weight of biphenyl is 154 g.
The boiling point of the solution prepared by dissolving 2.50 g of biphenyl in 85.0 g of benzene is 80.58 °C.
The boiling point elevation of the solution can be determined using the equation ΔTb = Kb x m, where ΔTb represents the boiling point elevation, Kb is the boiling point elevation constant (for benzene, Kb = 2.53 °C/m), and m denotes the molality of the solution.
To calculate the molality, we first need to find the number of moles of biphenyl in the solution. By dividing the given mass of biphenyl (2.50 g) by its molar mass (154 g/mol), we obtain 0.0162 mol.
Next, we can determine the molality by dividing the moles of solute by the mass of the solvent in kilograms. Given that the mass of the solvent is 85.0 g (0.085 kg), the molality is calculated as 0.0162 mol / 0.085 kg = 0.191 mol/kg.
Substituting this molality into the equation, we have ΔTb = 2.53 °C/m x 0.191 mol/kg = 0.484 °C.
This indicates that the boiling point of the solution is raised by 0.484 °C compared to the boiling point of pure benzene, which is 80.1 °C.
Therefore, the boiling point of the solution, prepared by dissolving 2.50 g of biphenyl in 85.0 g of benzene, is 80.58 °C.
Know more about Boiling Point here:
https://brainly.com/question/28203474
#SPJ11
Chlorophyll is a green pigment in plants responsible for harnessing sunlight to help the plant produce sugars through the process of photosynthesis. If several tomato plants were to be grown under lamps producing only a single color of light, what would be the least effective choice for light color?
Group of answer choices
green
orange
red
blue
The least effective choice of color would be green color. Hence option a is correct.
The plants absorb all different wavelength lights of the visible light spectra but the only color that is not absorbed and reflected back is green color light.
The principal pigment in photosynthesis, chlorophyll, reflects green light and significantly absorbs red and blue light. Chloroplasts, which house the chlorophyll in plants, are where photosynthesis occurs.
The plant's green colour is a reflection of the green light. Violet and orange (chlorophyll a) and blue and yellow (chlorophyll b) are the colours that are most readily absorbed. Therefore, green colour light would be least effective for the production of sugar and fruit in this tomato plant.
To know about chlorophyll
https://brainly.com/question/29853003
#SPJ4
The pressure of a gas is 1.2 atm at 300k. calculate the pressure at 250k if the gas is in a rigid container.
The pressure of a gas is 1.2 atm at 300k. the pressure at 250k if the gas is in a rigid container is 1.0 atm.
To solve this problem, we can use the combined gas law, which states that:
(P1 * V1) / (T1) = (P2 * V2) / (T2)
where P1 is the initial pressure, V1 is the initial volume (which is constant since the gas is in a rigid container), T1 is the initial temperature, P2 is the final pressure (what we're trying to find), V2 is the final volume (also constant), and T2 is the final temperature.
We can rearrange the equation to solve for P2:
P2 = (P1 * V1 * T2) / (V2 * T1)
Plugging in the given values, we get:
P2 = (1.2 atm * V1 * 250K) / (V2 * 300K)
Since the container is rigid, V1 = V2, so we can cancel those terms:
P2 = (1.2 atm * 250K) / 300K
Simplifying:
P2 = 1.0 atm
Therefore, the pressure of the gas at 250K in a rigid container is 1.0 atm.
For more such questions on pressure, click on:
https://brainly.com/question/24719118
#SPJ11
Which of the following will undergo a condensation reaction to produce CH3CH2OCH2CH3
The reaction that undergoes a condensation reaction to produce CH₃CH₂OCH₂CH₃ is the reaction is involving 2CH₃CH₂OH which is Option D.
The reason behind this is that the reaction between these two compounds is an example of a nucleophilic substitution reaction which includes the replacement or taking over of a leaving group (in this case Br) by a nucleophile (in this case OH) . The reaction projects van SN2 reaction mechanism.
SN2 reaction mechanism refers to the type of reaction mechanism that is very common in organic chemistry. Inside this mechanism, one bond is broken and dismantled and one bond is formed in a concerted way.
The SN2 reaction mechanism includes the nucleophilic substitution reaction of the leaving group (which generally consists of halide groups or other electron-withdrawing groups) with a nucleophile in a given organic compound .
To learn more about SN2 reaction mechanism
https://brainly.com/question/14150949
#SPJ1