Answer:
0.0104 moles of gas in the flask.
Explanation:
To calculate the number of moles of gas in the flask, you can use the ideal gas law equation: PV = nRT. Where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant and T is temperature.
First, you need to convert the pressure from mmHg to atm and the temperature from Celsius to Kelvin. The pressure in atm is 760.0 mmHg / 760 mmHg/atm = 1 atm. The temperature in Kelvin is 17.00°C + 273.15 = 290.15 K.
Next, you need to convert the volume from mL to L. The volume in L is 250.0 mL / 1000 mL/L = 0.2500 L.
Now you can plug all the values into the ideal gas law equation and solve for n: (1 atm)(0.2500 L) = n(0.08206 L·atm/mol·K)(290.15 K). Solving for n gives n = 0.0104 mol.
So there are approximately 0.0104 moles of gas in the flask.
For the reaction:
S8(s) + 8 O2(g)⟶8 SO2(g) ΔH = –2368 kJ
How much heat is evolved when 25.0 moles of sulfur is burned in excess oxygen?
The amount of heat evolved when 25 moles of Sulfur is burned in excess oxygen is -74000 kJ.
The balanced reaction is given that is:
[tex]S_8(s) + 8 O_2(g) \rightarrow 8 SO_2(g)[/tex]
We can see that 1 mole of [tex]S_8[/tex] reacts with 8 moles of [tex]O_2[/tex] to produce 8 moles of [tex]So_2[/tex].
If 25.0 moles of [tex]S_8[/tex] reacts with excess Oxygen, then the amount of [tex]O_2[/tex] which is required in the reaction will be:
8 moles [tex]O_2[/tex] / 1 mole S8 × 25.0 moles S8 = 200 moles [tex]O_2[/tex]
We can use the enthalpy change and calculate the amount of heat evolved:
[tex]\Delta H[/tex] = -2368 kJ/ 8 moles [tex]SO_2[/tex]
The heat evolved = [tex]\Delta H[/tex] × moles of [tex]SO_2[/tex] produced
Moles of [tex]SO_2[/tex] produced = 8 moles [tex]SO_2[/tex] / 1 mole [tex]S_8[/tex] × 25.0 moles [tex]S_8[/tex]
= 200 moles [tex]SO_2[/tex].
Therefore, Heat evolved= -2368 kJ/ 8 moles [tex]SO_2[/tex] × 200 moles [tex]SO_2[/tex]
= -74000 kJ
The amount of heat evolved when 25 moles of Sulfur is burned in excess oxygen is -74000 kJ, the negative sign here indicates that the reaction is exothermic.
Learn more about the enthalpy change at:
https://brainly.com/question/28873088
#SPJ1
How do I find solution concentration
To find the solution concentration, you need to know the amount of solute and the volume of the solution.
The solution concentration is typically expressed in terms of molarity (moles of solute per liter of solution). To calculate the molarity of a solution, divide the moles of solute by the volume of the solution in liters.
Another way to express solution concentration is in terms of percent by mass or volume, which is calculated by dividing the mass or volume of the solute by the mass or volume of the solution and multiplying by 100.
To find the solution concentration, you'll need to calculate the ratio of solute (substance being dissolved) to solvent (substance doing the dissolving) in the mixture.
Concentration is commonly expressed in units like molarity (M), mass/volume percent, or parts per million (ppm).
To calculate molarity (M), divide the moles of solute by the volume of the solvent (in liters). The formula is:
Molarity (M) = moles of solute / volume of solvent (L)
For mass/volume percent, divide the mass of the solute by the total volume of the solution and multiply by 100. The formula is:
Mass/volume percent = (mass of solute / total volume of solution) x 100
For parts per million (ppm), divide the mass of the solute by the total mass of the solution and multiply by 1,000,000.
The formula is:
ppm = (mass of solute / total mass of solution) x 1,000,000
Choose the appropriate formula based on the units required for your specific problem.
For more question on solution concentration
https://brainly.com/question/26255204
#SPJ11
What happens to the particles of a gad when the gas is compressed
Answer:
When the gas is compressed, its molecules come closer and internal energy of gas is increased and the number of collisions will also increase. As the gas is compressed, the work done on it shows up as increased internal energy, which must be transferred to the surroundings to keep the temperature constant.
A sample of gas is contained in a 245 mL flask at a temperature of 23.5°C. The gas pressure is 37.8 mm Hg. The gas is moved to a new flask, which is then immersed in ice water, and which has a volume of 54 mL. What is the pressure of the gas in the smaller flask at the new temperature?
We can use the combined gas law to solve this problem:
(P1V1/T1) = (P2V2/T2)
where P1, V1, and T1 are the initial pressure, volume, and temperature, respectively, and P2, V2, and T2 are the final pressure, volume, and temperature, respectively.
We are given that the initial pressure is P1 = 37.8 mm Hg and the initial volume is V1 = 245 mL. The initial temperature is T1 = 23.5°C, which we need to convert to Kelvin by adding 273.15:
T1 = 23.5°C + 273.15 = 296.65 K
We are also given that the final volume is V2 = 54 mL, and the final temperature is the temperature of the ice water, which is 0°C or 273.15 K.
Now we can solve for the final pressure, P2:
(P1V1/T1) = (P2V2/T2)
P2 = (P1V1T2) / (V2T1)
P2 = (37.8 mm Hg * 245 mL * 273.15 K) / (54 mL * 296.65 K)
P2 = 24.4 mm Hg
Therefore, the pressure of the gas in the smaller flask at the new temperature is 24.4 mm Hg.
Help!!!!!!!!!!!!!!!!!!!!!!!
All of the equation-related claims are not entirely true. The appropriate chemical formula should be:
Fe(OH)3 + 3NH4Cl = FeCl3 + 3NH4OH
Because the total mass of the reactants and products are equal, as well as the number of each type of atom in each of the reactants and products, mass is conserved in this balanced equation. Depending on the stoichiometric coefficients in the balanced equation, there may or may not be an equal amount of molecules in the reactants and products.
Iron(III) hydroxide (Fe(OH)3) and ammonium chloride (NH4Cl) are the products of the chemical reaction between iron(III) chloride (FeCl3) and ammonium hydroxide (NH4OH).
The coefficients (the numbers in front of the chemical formulae) must be changed to make sure that the number of each type of atom is the same on both sides of the equation in order to ensure that the equation is balanced. The coefficients in this instance are:
Fe(OH)3 + 3NH4Cl = FeCl3 + 3NH4OH
Learn more about coefficients at :
https://brainly.com/question/29993529
#SPJ1
Both chairs are the same size and have the same number of molecules. The diagram above shows the chairs before they touch.
How does the temperature of the bottom chair compare with the temperature of the top chair before the chairs touch? What will happen after the chairs have been touching for a while?
Before the chairs touch, the temperature of the bottom chair is lower than the temperature of the top chair, this is because the molecules in the bottom chair are in contact with a cooler surface.
After the chairs have been touching for a while, the heat will begin to transfer from the top chair to the bottom chair through a process called conduction. This will continue until the temperature of the two chairs equalizes, at which point there will be no more net heat transfer between them.
The final temperature of both chairs will be somewhere between the initial temperatures of the two chairs, and will depend on factors such as the thermal conductivity of the material, the size of the chairs, and the duration of the contact.
To know more about the Molecules, here
https://brainly.com/question/2114821
#SPJ1
At some constant temperature, the equilibrium constant for the reaction below is Kc = .76. An empty 1.00L flask is charged with 2.00 mol carbon tetrachloride and then allowed to reach equilibrium.
CCl4(g) ⇌ C (s) + 2 Cl2(g)
a. What fraction of the reactant remains at equilibrium?
b. What is the molarity of chlorine gas at equilibrium?
At some constant temperature, the equilibrium constant for the reaction below is Kc = .76. An empty 1.00L flask is charged with 2.00 mol carbon tetrachloride and then allowed to reach equilibrium. CCl4(g) ⇌ C (s) + 2 Cl2(g)
a. To find the fraction of the reactant (CCl4) remaining at equilibrium, we can start by determining the initial concentration of CCl4:
Initial concentration of CCl4 = moles/volume = 2.00 mol / 1.00 L = 2.00 M
Let x be the change in concentration of CCl4 at equilibrium. Then, the equilibrium concentrations are:
[CCl4] = 2.00 - x
[Cl2] = 2x
The equilibrium constant expression is given by:
Kc = [Cl2]^2 / [CCl4]
Plugging in the given Kc value (0.76) and the equilibrium concentrations:
0.76 = (2x)^2 / (2.00 - x)
Now, you can solve for x. The fraction of the reactant remaining at equilibrium is (2.00 - x) / 2.00.
b. To find the molarity of chlorine gas (Cl2) at equilibrium, you can use the value of x obtained in part (a). The molarity of Cl2 is equal to 2x.
For more questions on: temperature
https://brainly.com/question/27944554
#SPJ11
Which of the following is an example of an environmental impact of
agriculture?
O high use of gold, copper, and silver
O high use of rock supplies
O high use of mineral resources
O high use of water
Ne
Answer:
B
self explanatory
Explanation:
Jeremiah is conducting an investigation about the water cycle. He is given the following materials:
a lamp
a glass jar that contains water
plastic wrap
Describe how Jeremiah can arrange these materials to create a model that shows the processes by which water is cycled from a lake into the atmosphere and back to the lake. Be sure to identify what each material represents in the model.
Input Field 1 of 1
Skip to input field
Jeremiah can arrange the materials in the following way to create a model that shows the processes by which water is cycled from a lake into the atmosphere and back to the lake
What is the water cycle?The following can be a representation of the water cycle;
Fill the glass jar with water to resemble the lake.
Put the lamp next to the jar to symbolize the sun.
Wrap the jar in plastic sheet to imitate the atmosphere.
Turn on the bulb to represent the sun warming the water.
When the water in the jar warms up and evaporates into water vapor, moisture will condense on the plastic wrap.
The water vapor will ascend and collect on the plastic wrap to represent the water vapor rising into the atmosphere.
Water vapor cools as it rises and condenses back into liquid form, as shown by the water droplets gathering on the plastic wrap.
Learn more about the water cycle:https://brainly.com/question/31195929
#SPJ1
How is oil soap and water sustainable
Oil soap and water are sustainable because they are both natural and biodegradable.
What is oil soap?Oil soap is a cleaning product that is made from natural materials, such as vegetable oils and potassium hydroxide.
One of the main ways in which oil soap and water can be considered sustainable is that they are both natural and biodegradable.
In addition, using oil soap and water to clean wooden surfaces can help to prolong their lifespan, reducing the need for frequent replacements and minimizing waste.
Regular maintenance with oil soap can help to prevent dirt and grime buildup that can cause damage to wooden surfaces.
Learn more about oil soap here: https://brainly.com/question/16375181
#SPJ1
please help show i need help
The complete table for the phase changes would be as follows:
solid to liquid: melting, heating, IMF's breaking, energy absorbedliquid to gas: vaporization, heating, IMF's breaking, energy absorbedsolid to gas: sublimation, heating, IMF's breaking, energy absorbedliquid to solid: freezing, cooling, IMF's forming, energy releasedgas to solid: deposition, cooling, IMF's forming, energy releasedgas to liquid: condensation, cooling, IMF's forming, energy releasedWhat are phase changes?Phase changes occur when a substance changes from one phase to another. When a significant amount of energy is gained or lost, this process takes place.
Phase change also depends on elements like pressure and temperature.
There are six ways a substance can change between these three phases; melting, freezing, evaporating, condensing, sublimation, and deposition.
Learn more about phase changes at: https://brainly.com/question/25664350
#SPJ1
For the Li2 molecule, rank order the following orbitals from lowest to highest energy: 1s, 2s, σ2s, σ*2s
The order of the energy levels for the Li2 molecule is:
1s < σ2s < 2s < σ*2s
The 1s orbital is the lowest in energy because it is closest to the nucleus and has the highest electron density. The σ2s orbital is next in energy because it is a bonding orbital that is formed by the overlap of two atomic 2s orbitals. The 2s orbital is higher in energy than the σ2s orbital because it is an atomic orbital that has not participated in bonding. The σ*2s orbital is the highest in energy because it is an antibonding orbital that weakens the bond between the two Li atoms.
To know more about energy levels, here
brainly.com/question/29736874
#SPJ1
After writing the correct formulas for the reactants and products, the equation is balanced by a. adjusting subscripts to the formula(s). b. adjusting coefficients to the smallest whole-number ratio. c. changing the products formed. d. making the number of reactants equal to the number of products.
After writing the correct formulas for the reactants and products, the equation is balanced by adjusting coefficients to the smallest whole-number ratio. The correct answer is option b.
Adjusting the coefficients to the smallest whole-number ratio is the process of balancing a chemical equation. Balancing the equation means that the number of atoms of each element on the reactant side must equal the number of atoms of each element on the product side.
The coefficients in front of the formulas of the reactants and products are used to balance the equation. By adjusting the coefficients, you can make sure that the number of atoms of each element is balanced on both sides of the equation. Therefore option b is correct
For more such questions on reactants, click on:
https://brainly.com/question/26283409
#SPJ11
An argon ion laser emits visible radiation with photons of energy 4.071 x 10-19 J. What is the
wavelength of the radiation?
The wavelength of the radiation emitted by the argon ion laser is [tex]4.854 * 10^-7 m[/tex].
Wavelength is a property of any type of wave that refers to the distance between two adjacent points on the wave that is in phase, i.e., at the same point in their respective cycles. It is usually denoted by the Greek letter lambda (λ) and is measured in units of length, such as meters or nanometers.
The energy carried by the photon (E) is related to the wavelength ([tex]\lambda[/tex]) through the following equation:
[tex]E=hc/\lambda[/tex]; where 'h' is the Plank's Constant and 'c' is the speed of light which is [tex]3* 10^{-7} m/s[/tex].
We can say that
[tex]\lambda - hc/E[/tex]
Now after substituting the given values, we get:
[tex]\lambda = (6.626 * 10^{-34} J.s * 3.00 * 10^8 m/s) / (4.071 * 10^{-19} J)\\\lambda = 4.854 * 10^-7 m[/tex]
Therefore the wavelength of the radiation emitted by the argon ion laser is [tex]4.854 * 10^-7 m[/tex].
Learn more about the Plank's Constant at:
https://brainly.com/question/28060145
#SPJ4
2C8H18(l)+25O2(g)⟶16CO2(g)+18H2O(l)
If 538 mol
of octane combusts, what volume of carbon dioxide is produced at 31.0 ∘C
and 0.995 atm?
The volume of the carbon dioxide is produced at the 31.0 °C and the 0.995 atm is 119,786 L.
The number of moles of octane = 538 mol
The moles of carbon dioxide = 4888 mol
The temperature of the gas = 31.0 °C
The pressure of the gas = 0.995 atm
The volume of the gas = ?
The ideal gas equation is :
P V = n R T
Where,
The p is the pressure = 0.995 atm
The V is the volume = ?
The n is moles of gas = 4888 mol
The R is gas constant = 0.823 atm L / mol K
The T is temperature = 31 + 273 = 304 K
V = n R T / P
V = ( 4888 mol × 0.0823 × 304 ) / 0.995
V = 119,786 L
The volume is 119,786 L.
To learn more about volume here
https://brainly.com/question/29813393
#SPJ1
What mass (grams) of silver oxide would you need to decompose in order to produce 120.6 grams of silver?
Ag2O --> Ag + O2
The mass of silver oxide needed to decompose in order to produce 120.6 grams of silver is 494.5 grams.
The balanced chemical equation for silver oxide breakdown is:
[tex]Ag_2O[/tex] → [tex]2 Ag[/tex] + [tex]1/2 O_2[/tex]
The equation shows that for every mole of silver oxide that decomposes, two moles of silver are created, and the molar mass of [tex]Ag_2O[/tex] is 231.74 g/mol.
Hence, using stoichiometry, we can calculate the quantity of silver oxide necessary to generate 120.6 grams of silver:
120.6 g Ag × (1 mol Ag / 107.87 g Ag) × (1 mol [tex]Ag_2O[/tex]/ 2 mol Ag) × (231.74 g [tex]Ag_2O[/tex] / 1 mol [tex]Ag_2O[/tex] )
= 494.5 g [tex]Ag_2O[/tex]
As a result, 494.5 grams of silver oxide is needed to decompose in order to produce 120.6 grams of silver.
For more such questions on silver oxide, click on:
https://brainly.com/question/27241605
#SPJ11
A chemistry teacher has 6 liters of a
sodium nitrate solution. She has 24
students in her class and she wants
to divide the solution evenly among
them. How many milliliters of sodium
nitrate solution will each student
receive?
Answer:
There are 1000 milliliters (ml) in one liter. Therefore, the teacher has a total of 6 x 1000 = 6000 ml of sodium nitrate solution.
Explanation:
To divide the solution evenly among the 24 students, we need to divide the total volume of the solution by the number of students:
6000 ml ÷ 24 students = 250 ml per student
Therefore, each student will receive 250 milliliters of sodium nitrate solution.
Answer:
Answer- 0.25ml
Explanation:
So there are 24 students and 6 liters of Solution.So to evenly distribute
Just divide 6 by 24(6÷24/)... So the answer will be 0.25
Perform the conversions between energy units.
6.61 x 10^6 J = ___kcal. My initial answer was 6610 but it was wrong can someone show me how to get the correct answer
After considering the given data and performing the evaluation regarding the convertion of energy units the answer derived is 6.61 x 10⁶ J = 1577.16 kcal.
In order to alter joules (J) to kilocalories (kcal), the below conversion can be applied.
1 kcal = 4.184 kJ.
We start by, converting J to kJ by dividing by 1000:
6.61 x 10⁶ J = 6.61 x 10³ kJ
Next step we convert kJ to kcal by dividing by 4.184:
= 6.61 x 10³ kJ ÷ 4.184
= 1577.16 kcal (rounded to five significant figures)
1 joule (J) is the amount of energy needed to apply a force of 1 newton (N) over a distance of 1 meter (m).
1 kilocalorie (kcal), on the other hand, is described as the amount of energy required to increase the temperature of 1 kilogram (kg) of water by 1 degree Celsius (°C), which is equal to 4184 joules (J).
To learn more about kilocalorie
https://brainly.com/question/30763955
#SPJ1
which type of mutation could have the most drastic effect
on a gene a chromosomal mutation? Back up your choice.
Answer:
we need to know the definitions of the two types of mutations:
A chromosomal mutation is a change in the structure or number of chromosomes, which are the structures that carry genes. Examples of chromosomal mutations are deletions, duplications, inversions, and translocations.A gene mutation is a change in the sequence of nucleotides, which are the building blocks of DNA and RNA. Examples of gene mutations are substitutions, insertions, and deletions.Looking at the definitions, we can see that a chromosomal mutation can affect many genes at once, while a gene mutation can affect only one or a few nucleotides. Therefore, a chromosomal mutation could have the most drastic effect on a gene, because it could alter or delete an entire gene or multiple genes, resulting in major changes in the phenotype or function of an organism. A gene mutation could also have significant effects on a gene, but it could also be silent or minor depending on the location and type of the mutation. Therefore, the answer is a chromosomal mutation. One possible way to back up this choice is to give an example of a chromosomal mutation that causes a genetic disorder, such as Down syndrome or Turner syndrome.
A solution has [H+] = 1.39x10^-6 M. What is the pH?
Answer:
the pH of the solution is approximately 5.857.
Explanation:
The pH of a solution can be calculated using the formula:
pH = -log[H+]
where [H+] is the concentration of hydrogen ions in moles per liter (M).
In this case, [H+] = 1.39x10^-6 M, so:
pH = -log(1.39x10^-6)
= 5.857
Therefore, the pH of the solution is approximately 5.857.
Write the net chemical equation for the production of manganese from manganese (II) carbonate, oxygen and aluminum. Be sure your equation is balanced.
Answer:
Explanation:
The chemical equation for the production of manganese from manganese (II) carbonate, oxygen, and aluminium can be represented as follows:
3MnCO3(s) + 3O2(g) + 4Al(s) → 3Mn(s) + 3CO2(g) + 2Al2O3(s)
In this equation, manganese (II) carbonate (MnCO3) reacts with oxygen (O2) and aluminium (Al) to produce manganese (Mn), carbon dioxide (CO2), and aluminium oxide (Al2O3). The equation is balanced with three molecules of manganese carbonate, three molecules of oxygen, and four molecules of aluminium reacting to produce three molecules of manganese, three molecules of carbon dioxide, and two molecules of aluminium oxide.
PLS MARK ME BRAINLIEST
What do not have true leaves or roots
Answer: Moss
Explanation: It's a flowerless plant
Draw a model of the four types of nuclear decay and explain each. Pick the same element (Si-32) to start with.
Sure, I can explain the four types of nuclear decay and provide a model for each using Si-32 as an example.
Si-32 is a radioactive isotope of Silicon with 14 protons and 18 neutrons.
1. Alpha Decay:
In alpha decay, an unstable nucleus emits an alpha particle, which consists of two protons and two neutrons, reducing the atomic number by two and the mass number by four. This makes the resulting nucleus a different element.
Model: Si-32 → alpha particle + Mg-28
Explanation: Si-32 decays into an alpha particle (two protons and two neutrons) and becomes Mg-28.
2. Beta Decay:
In beta decay, a neutron is converted into a proton and an electron. The proton stays in the nucleus, and the electron is emitted as a beta particle. This increases the atomic number by one while keeping the mass number the same.
Model: Si-32 → beta particle + P-32
Explanation: Si-32 decays into a beta particle (an electron) and becomes P-32.
3. Gamma Decay:
Gamma decay occurs when an unstable nucleus emits high-energy photons called gamma rays. Unlike alpha and beta decay, gamma decay does not change the atomic number or mass number of the nucleus.
Model: Si-32 → Si-32 + gamma ray
Explanation: Si-32 emits a gamma ray but remains Si-32.
4. Electron Capture:
In electron capture, an unstable nucleus absorbs an electron from an inner shell, converting a proton into a neutron. This reduces the atomic number by one while keeping the mass number the same.
Model: Si-32 + electron → Al-32
Explanation: Si-32 captures an electron and becomes Al-32.
These four types of nuclear decay can occur in radioactive isotopes, and they result in a change in the atomic number and/or mass number of the nucleus.
N
01H
H
The property of water shown allows it to-
A freeze faster than it boils due to sharing metallic bonds
B. support floating objects due to forces between covalent bonds
C remain stable due to electrons forming ionic bonds
D. be both cohesive and adhesive due to hydrogen bonds
Answer:
D
Explanation:
The special property of water is that it is able to be cohesive and adhesive due to their hydrogen bonds
You react 0.017 mol of solid metal with HCl in a coffee cup calorimeter (reaction shown below). The calorimeter has 100 mL of water in it, and the temperature of the water increases by 3.81°C. The calorimeter has a heat capacity of 40.4 J/°C. What is the enthalpy of the reaction in terms of kJ per mol of the metal (your answer should be NEGATIVE, remember to convert from J to kJ, specific heat capacity of water is 4.184 J/g-°C)?
M(s) + 2 HCl (aq) MCl2 (aq) + H2 (g)
M = metal
The enthalpy of the reaction is -94.1308 kJ/mol of the metal.
First, we need to calculate the amount of heat absorbed by the water in the calorimeter. We can use the formula:
q = m × C × ΔT
where q is the amount of heat absorbed by the water, m is the mass of the water, C is the specific heat capacity of water, and ΔT is the temperature change of the water.
q = 100 g × 4.184 J/g-°C × 3.81°C = 1601.304 J
Next, we need to calculate the amount of heat released by the reaction. We can use the formula:
q = n × ΔH
where q is the amount of heat released, n is the number of moles of the metal, and ΔH is the enthalpy change of the reaction.
We know that 0.017 moles of metal reacted, and we can assume that all the heat released by the reaction was absorbed by the water in the calorimeter.
Therefore:
q = n × ΔH
1601.304 J = 0.017 mol × ΔH
ΔH = 1601.304 J / 0.017 mol = 94130.8235 J/mol
Finally, we need to convert the answer from joules to kilojoules:
ΔH = 94130.8235 J/mol / 1000 J/kJ = -94.1308 kJ/mol
Learn more about enthalpy, here:
https://brainly.com/question/16720480
#SPJ1
The density of a test gas is to be determined experimentally at 289.2 K using an apparatus constructed of a 4.050 L glass bulb volume that is attached to a vacuum pump. The mass of the evacuated bulb is 22.513 g. After it is filled with the test gas to a pressure of 0.0250 atm, the mass increases to 22.651 g. Assume the gas behaves ideally.
What is the density of the gas? How many moles of gas are in the bulb? What is the apparent molar mass of the gas?
The density of the gas is 0.0340 g/L, moles of gas in the bulb is 0.00124 mol and apparent molar mass is 111.3 g/mol.
How to calculate density, moles and molar mass?To determine the density of the gas, use the ideal gas law:
PV = nRT
where P = pressure, V = volume, n = number of moles, R = gas constant, and T = temperature.
Since the volume and temperature are constant:
(P/n) = constant
Therefore, the density (ρ) of the gas is given by:
ρ = (m-m₀)/V = (Δm)/V
where m = mass of the bulb filled with the gas, m₀ = mass of the evacuated bulb, and Δm = m - m₀ is the mass of the gas.
Substituting the given values:
Δm = 22.651 g - 22.513 g = 0.138 g
V = 4.050 L
ρ = 0.138 g / 4.050 L = 0.0340 g/L
To find the number of moles of gas in the bulb, use the equation:
n = PV/RT
Substituting the given values:
n = (0.0250 atm)(4.050 L) / (0.0821 L·atm/mol·K)(289.2 K) = 0.00124 mol
Finally, to find the apparent molar mass of the gas, use the equation:
M = m/n
where M = molar mass of the gas and m = mass of the gas.
Substituting the given values:
M = 0.138 g / 0.00124 mol = 111.3 g/mol
Therefore, the density of the gas is 0.0340 g/L, there are 0.00124 mol of gas in the bulb, and the apparent molar mass of the gas is 111.3 g/mol.
Find out more on molar mass here: https://brainly.com/question/31600958
#SPJ1
Which solution would you choose to supress the dissolution of MgCO3?
A. 0.200 M NaCl
B. 0.200 HCl
C. 0.200 M NaNO3
D. 0.200 M Na2CO3
The best solution to suppress the dissolution of MgCO3 is option D 0.200 M Na2CO3
To suppress the dissolution of MgCO3We need to add an ion or compound that will react with MgCO3 and form a precipitate, thus removing Mg2+ and CO32- ions from the solution.
Therefore, Option D, 0.200 M Na2CO3, contains CO32- ions that can react with Mg2+ ions to form MgCO3 precipitate. This would effectively suppress the dissolution of MgCO3 by removing Mg2+ and CO32- ions from the solution.
Therefore, option D is the best solution to suppress the dissolution of MgCO3.
Learn more about dissolution here : brainly.in/question/14694236
#SPJ1
Joan wrote a science fiction story where the people only texted each other, and never talked. They still had vocal chords, but they could no
longer make sounds. Their vocal chords were
Answer:
Vestigial
Explanation:
The retention of genetically determined traits or structures that have partially or completely lost their ancestral purpose in a specific species is known as vestigiality. In most cases, evaluating the vestigality requires comparison with comparable traits in closely related species.
1. To operate a batch reactor for converting A into R. This is a liquid phase reaction with the stoichiometry A → R. CA,(mol/l) 0.1 0.2 0.3 0.4 0.2 0.6 0.7 0.8 1.0 1.3 2.0 -rA,(mol/l min) 0.1 0.3 0.5 0.6 0.5 0.25 0.10 0.06 0.05 0.045 0.042 For the above data determine the order of reaction and rate constant.
The reaction is second order with a rate constant of 0.043 mol/l min.
How to explain the reactionFor CA = 0.1 mol/l, -rA = 0.1 mol/l min
For CA = 0.2 mol/l, -rA = 0.3 mol/l min
For CA = 0.3 mol/l, -rA = 0.5 mol/l min
For CA = 0.4 mol/l, -rA = 0.6 mol/l min
The slope of this line is equal to the order of the reaction (n), and the y-intercept is ln(k).
Slope = (0.6931 - (-2.3026)) / (0.3010 - (-0.9163)) = 1.929
ln(k) = -2.3026 + 1.929 * (-0.3010)
ln(k) = -3.1504
k = e^(-3.1504) = 0.043 mol/l min
The reaction is second order with a rate constant of 0.043 mol/l min.
Learn more about reaction on
https://brainly.com/question/11231920
#SPJ1
Н
HOH
14
Н-С-С-С-Н
I
ННН
List the number of each atom in the formulas above:
H
НН Н
Н-С-С-С-О-Н
LI
НН Н
DONE
Н Н
H
Н-С-С-О-С-Н
II
Н Н
H
Answer:
Explanation:
It seems like you’re trying to count the number of atoms in some chemical formulas. Here’s the list of the number of each atom in the formulas you provided:
Formula 1: Н - 1 Formula 2: H - 1, O - 1 Formula 3: Н - 14 Formula 4: Н - 2, C - 3 Formula 5: I - 1 Formula 6: Н - 3 Formula 7: H - 2 Formula 8: Н - 2, C - 3, O - 1 Formula 9: Li - 1 Formula 10: Н - 2 Formula 11: Н - 2 Formula 12: H - 1 Formula 13: Н - 2, C - 2, O - 1 Formula 14: II