The potential energy of the car at the top of the hill is 1.75 x 10^6 J. If we neglect friction, the car will have a speed of 74.7 m/s as it rolls down the hill.
a. To find the potential energy of the car at the top of the hill, we need to use the formula:
potential energy = mass x gravity x height
where mass is given as 2.0 x 103 kg, gravity is approximately 9.8 m/s^2, and height is the vertical distance the car is lifted up the hill. We can find this distance by using the angle of 15 and the horizontal distance of 345 m. The vertical distance is given by:
height = 345 m x sin(15) = 90.3 m
Plugging in these values, we get:
potential energy = (2.0 x 103 kg) x (9.8 m/s^2) x (90.3 m) = 1.75 x 10^6 J
So the potential energy of the car at the top of the hill is 1.75 x 10^6 J.
b. To find the speed of the car as it rolls down the hill, we can use the conservation of energy principle:
potential energy at top = kinetic energy at bottom
At the top of the hill, the car has only potential energy, which we found to be 1.75 x 10^6 J. At the bottom of the hill, the car has only kinetic energy, which we can find using the formula:
kinetic energy = 0.5 x mass x velocity^2
where mass is still 2.0 x 103 kg, and velocity is what we are trying to find. Setting the potential energy at the top equal to the kinetic energy at the bottom, we get:
1.75 x 10^6 J = 0.5 x (2.0 x 103 kg) x velocity^2
Solving for velocity, we get:
velocity = sqrt( (2 x 1.75 x 10^6 J) / (2.0 x 103 kg) ) = 74.7 m/s
So if we neglect friction, the car will have a speed of 74.7 m/s as it rolls down the hill.
Learn more about potential energy here:-
https://brainly.com/question/24284560
#SPJ11
Two lines meet at a point that is also the vertex of a right angle. Set up and solve an equation to find the value of. Find the measurements of ∠CAE and ∠BAG.
1: What is the value of x?
2: What is the value of ∠CAE?
3: What is the value of ∠BAG?
Two lines meet at a point that is also the vertex of a right angle. The value of x is 0 degrees, the value of ∠CAE is 0 degrees and the value of ∠BAG is 90 degrees.
Since the point of intersection is the vertex of a right angle, we know that the sum of the angles formed by the two lines must be 180 degrees.
Let's assume that angle BAC is equal to x. Then we have:
∠BAC + ∠CAD + ∠BAE = 180 degrees
Since ∠CAD and ∠BAE are both right angles, we have:
x + 90 degrees + 90 degrees = 180 degrees
Simplifying this equation, we get:
x = 180 degrees - 90 degrees - 90 degrees
x = 0 degrees
Therefore, angle BAC is equal to 0 degrees.
Since angle CAD is a right angle, angle CAE is equal to 90 degrees - angle CAD. Substituting 90 degrees for angle CAD, we get:
∠CAE = 90 degrees - 90 degrees = 0 degrees
Therefore, angle CAE is also equal to 0 degrees. Similarly, since angle BAE is a right angle, angle BAG is equal to 90 degrees - angle BAE. Substituting 90 degrees for angle BAE, we get:
∠BAG = 90 degrees - x = 90 degrees - 0 degrees = 90 degrees
Therefore, angle BAG is equal to 90 degrees.
In summary, by using the fact that the sum of the angles formed by the two lines must be 180 degrees, we can solve for the value of x and the measurements of angles CAE and BAG. We found that x is equal to 0 degrees, angle CAE is equal to 0 degrees, and angle BAG is equal to 90 degrees.
To know more about right angle refer here:
https://brainly.com/question/29623146#
#SPJ11
An iron Cub has each 15cm long at 20c. What will be :
1 the new surface of a face weather temperature rise to 80c
2 the volume of the same final temperature
a) The new surface area of one face will be 225.162 cm^2.
b) The volume of the iron cube at the final temperature of 80°C will be 3382.29 cm^3.
The thermal expansion of a solid material can be determined using the coefficient of linear expansion, which is a material property that relates the change in length to the change in temperature. For iron, the coefficient of linear expansion is approximately 1.2 x 10^-5 /°C.
a) To find the new surface area of a face when the temperature rises from 20°C to 80°C, we can use the formula:
ΔA = A_0 * α * ΔT
where ΔA is the change in surface area, A_0 is the initial surface area, α is the coefficient of linear expansion, and ΔT is the change in temperature.
For a cube with each side 15 cm long, the initial surface area of one face is 15 cm x 15 cm = 225 cm^2. The change in temperature is 80°C - 20°C = 60°C. Substituting these values and the coefficient of linear expansion for iron, we get:
ΔA = 225 cm^2 * 1.2 x 10^-5 /°C * 60°C = 0.162 cm^2
Therefore, the new surface area of one face will be 225 cm^2 + 0.162 cm^2 = 225.162 cm^2.
b) To find the volume of the iron cube at the final temperature of 80°C, we can use the formula:
ΔV = V₁ * β * ΔT
where ΔV is the change in volume, V₁ is the initial volume, β is the coefficient of volume expansion, and ΔT is the change in temperature.
For a cube with each side 15 cm long, the initial volume is 15 cm x 15 cm x 15 cm = 3375 cm^3. The coefficient of volume expansion for iron is approximately three times the coefficient of linear expansion, so we can use β = 3α.
Substituting these values and the change in temperature, we get:
ΔV = 3375 cm^3 * 3 * 1.2 x 10^-5 /°C * 60°C = 7.29 cm^3
Therefore, the volume of the iron cube at the final temperature of 80°C will be 3375 cm^3 + 7.29 cm^3 = 3382.29 cm^3.
To learn more about temperature click on,
https://brainly.com/question/12789820
#SPJ4
Q.3. Fill the table to describe the characteristics of the states of matter.
Do they have
definite shape?
Vapor
Water
Ice
States of
Matter
Do they have
definite volume?
Do they
compress?
Answer:
Three states of matter exist—solid, liquid, and gas. Solids have a definite shape and volume. Liquids have a definite volume,
Explanation:
According to the information, the table is completed as follows: Do they have definite shape? no (vapor), no (water), yes (ice); Do they have definite volume? no (vapor), yes (water), yes (ice); Do they compress? yes (vapor), no (water), no (ice).
How to fill the table to describe the characteristics of the states of matter?To fill the table to describe the characteristics of the states of matter we have to look for additional information of each state of matter and then complete the table. According to the information we can infer that the correct way to complete the table is:
Do they have definite shape? no (vapor), no (water), yes (ice); Do they have definite volume? no (vapor), yes (water), yes (ice); Do they compress? yes (vapor), no (water), no (ice).
Vapor | No | No | Yes
Water | No | Yes | No
Ice | Yes | Yes | No
Learn more about states of matter in: https://brainly.com/question/29069107
#SPJ1
Mike is cutting the grass using a human-powered lawn mower. He pushes the mower with a force of 45 n directed at an angle of 41° below the horizontal direction. Calculate the work that mike does on the mower each time he pushes it 9. 1 m across the yard.
Mike does approximately 303.2175 joules of work on the mower each time he pushes it 9.1 meters across the yard.
To calculate the work done by Mike on the mower, we can use the formula:
Work = Force * Distance * cos(theta)
where:
Work is the work done (in joules, J)Force is the magnitude of the force applied (in newtons, N)Distance is the distance over which the force is applied (in meters, m)theta is the angle between the force and the direction of motion (in degrees)Given:
Force = 45 N
Distance = 9.1 m
theta = 41°
Converting the angle to radians:
theta_rad = 41° * (π/180) ≈ 0.7156 radians
Calculating the work:
Work = 45 N * 9.1 m * cos(0.7156)
Work ≈ 45 N * 9.1 m * 0.7483
Work ≈ 303.2175 J
Therefore, Mike does approximately 303.2175 joules of work on the mower each time he pushes it 9.1 meters across the yard.
To know more about work done refer here
https://brainly.com/question/3902440#
#SPJ11
the image below shows a photo taken with a built-in lens of a digital camera. the bottom photo is taken with the same camera, but with an additional wide-angle lens. which wave phenomenon best explains the distortion of the bottom image compared to the top? diffraction dispersion reflection polarization
The wave phenomenon that best explains the distortion of the bottom image compared to the top is distortion due to the optical effect of lens refraction.
When light passes through a lens, it undergoes refraction, causing it to bend and converge or diverge depending on the curvature of the lens surface. A wide-angle lens can cause more bending of light and wider coverage, resulting in a distorted image with a wider field of view. Diffraction is the bending of light waves around obstacles, while dispersion is the separation of light into its constituent colors. Reflection involves the bouncing of light off surfaces, and polarization is the alignment of light waves in a particular orientation.
To know more about wave phenomenon , here
brainly.com/question/15390698
#SPJ4
A man hikes 6. 6 km north along a straight path with an average velocity of 4. 2 km/h to the north. He rests at a bench for 15 min. Then, he hikes 3. 8 km north with an average velocity of 5. 1 km/h to the north. How long does the total hike last?.
The man hikes 6.6 km north with an average velocity of 4.2 km/h to the north. We can use the equation:
distance = velocity x time
to find the time it takes for him to complete the first part of the hike. Solving for time, we get:
time = distance / velocity
time = 6.6 km / 4.2 km/h
time = 1.57 hours
After resting at the bench for 15 minutes (or 0.25 hours), the man continues hiking 3.8 km north with an average velocity of 5.1 km/h to the north.
Again, we can use the same equation to find the time it takes for him to complete this part of the hike:
time = distance / velocity
time = 3.8 km / 5.1 km/h
time = 0.75 hours
To find the total time for the hike, we simply add the time for the first part of the hike, the rest, and the second part of the hike:
total time = 1.57 hours + 0.25 hours + 0.75 hours
total time = 2.57 hours
So, the total hike lasts for 2.57 hours. It's important to note that we assumed the man did not take any breaks during the second part of the hike, and that he continued hiking at a constant velocity. Additionally, we assumed that the path he took was a straight line.
However, in reality, the path may not be a straight line and the man may take breaks or adjust his velocity during the hike.
To know more about average velocity refer here
https://brainly.com/question/862972#
#SPJ11
Measuring the length from the lowest point of a spring-mass to the highest point, it is found to be 42 cm. What is the amplitude?
a. 42cm
b. 0. 42m
c. 84cm
d. 21cm
Therefore, the amplitude is: amplitude = 21 cm. So, the correct answer is d. 21cm.
A periodic variable's amplitude measures the change it undergoes throughout a single period. When measured against a standard value, a non-periodic signal's amplitude is its magnitude. There are several definitions of amplitude, all of which depend on how much the extreme values of the variable deviate from one another.
The amplitude of a spring-mass system is half the distance between the equilibrium position (the rest position of the mass) and the highest point of the oscillation (the crest).
Since the length from the lowest point to the highest point of the oscillation is given as 42 cm, the total displacement of the oscillation is 2 times the amplitude.
Therefore, the amplitude is:
amplitude = 42 cm / 2 = 21 cm
So, the correct answer is d. 21cm.
Learn more about amplitude Visit: brainly.com/question/3613222
#SPJ4
Narrower
Write True if the statement is correct and change the underlined word/s if it is wrong.
1.
Gravity is a contact force that acts between two separate objects.
2 Gravity is the force exerted by the farth which is uivalent to the mass of an object.
1. False.
Gravity is a non-contact force that acts between two objects with mass, even if they are not in physical contact with each other.
2. False.
Gravity is the force exerted by the Earth (or any other massive body) on an object with mass.
The weight of an object is the measure of the force of gravity acting on it, and it is equivalent to the mass of the object times the acceleration due to gravity.
To know more about Gravity refer here
https://brainly.com/question/31321801#
#SPJ11
A) Find the tension in each of the two ropes supporting a hammock if one is at an angle of θ1 = 10 ∘ above the horizontal and the other is at an angle of θ2 = 33 ∘ above the horizontal. The person sleeping in the hammock (unconcerned about tensions and ropes) has a mass of 66 kg . Express your answer using two significant figures.
T1= ? N
B) Express your answer using two significant figures.
T2= ? N
(a) The tension in the rope at an angle of 10° above the horizontal is approximately 798.5.4 N.
(b) The tension in the rope at an angle of 33° above the horizontal is approximately937.7 N.
What is the tension in the rope?To find the tension in each rope, we can use the fact that the net force in the vertical direction must be zero since the person in the hammock is at rest. Let T1 and T2 be the tensions in the ropes, and let the x-axis point to the right and the y-axis point upward.
A) The forces acting on the person are their weight (mg) downward and the tensions T1 and T2 in the two ropes, which make angles θ1 and θ2 with the horizontal.
The vertical components of the tensions are T1sinθ1 and T2sinθ2, respectively, and the horizontal components are T1cosθ1 and T2cosθ2.
Therefore, we can write:
T1sinθ1 + T2sinθ2 = mg (vertical equilibrium)
T1cosθ1 = T2cosθ2 (horizontal equilibrium)
Solving for T1 and T2, we get:
T1 = (mgcosθ2) / (sinθ1cosθ2 + sinθ2cosθ1)
T1 = (66)(9.81 )(cos(33°)) / (sin(10°)cos(33°) + sin(33°)cos(10°))
T1 ≈ 798.5.4 N
B) Similarly, we can use the horizontal equilibrium equation to find T2:
T2 = T1cosθ1 / cosθ2 = (798.5 N)(cos(10°)) / cos(33°) ≈ 937.7 N
Learn more about tension on rope here: https://brainly.com/question/29466375
#SPJ1
Why is the wavelike nature of a moving baseball typically not observed?.
The wavelike nature of a moving baseball is typically not observed due to its relatively large mass and size in comparison to the extremely small scale of quantum mechanical effects, where wave-particle duality becomes significant.
Wave-particle duality is a fundamental concept in quantum mechanics, stating that particles like electrons can exhibit both particle-like and wave-like properties.
However, this behavior is most noticeable in extremely small objects, such as subatomic particles. The de Broglie wavelength is used to describe the wavelike nature of a particle and is given by the formula λ = h/(mv), where λ is the wavelength, h is Planck's constant, m is the mass of the particle, and v is its velocity.
For macroscopic objects like a baseball, the mass is large, making the de Broglie wavelength incredibly small. As the wavelength becomes smaller, the wavelike nature becomes less significant, and the object behaves more like a particle.
In the case of a moving baseball, the de Broglie wavelength is so small that the wavelike nature becomes essentially negligible and unobservable.
Furthermore, macroscopic objects like baseballs interact with their surroundings (e.g., air molecules) more frequently than subatomic particles.
This interaction, known as decoherence, reduces the visibility of quantum mechanical effects such as wave-particle duality.
In summary, the wavelike nature of a moving baseball is typically not observed due to its large mass and size, resulting in an extremely small de Broglie wavelength, and the frequent interaction with its surroundings, which reduces the visibility of quantum mechanical effects.
To know more about wavelike nature refer here
https://brainly.com/question/12751613#
#SPJ11
What is the angle of incidence for this ray?
Answer:
35
Explanation:
Let Angle of Incident ray be i.
Let Angle of Reflected ray be r.
By laws of reflection
i = r
Here
i + r = 70
i + i = 70
2i = 70
i = 70/2
i = 35
Hence
The angle of incidence for this ray is 35.
Robert and his younger brother Jake decide to go fishing in a nearby lake. Just before they cast off, they are both sitting at the back of the boat and the bow of the boat is touching the pier. Robert notices that they have left the fishing bait on the pier and asks Jake to go get the bait. Jake has a mass of 59. 5 kg and an arm reach of 50. 0 cm, Robert has a mass of 87. 5 kg, and the boat has a mass of 83. 0 kg and is 2. 70 m long. Determine the distance the boat moves away from the pier as Jake walks to the front of th
1. This problem involves the principle of conservation of momentum. Initially, the total momentum of the system is zero because they are all at rest.
When Jake starts walking toward the front of the boat, he exerts a force on the boat that causes it to move away from the pier.
To conserve momentum, the boat and Robert must move in the opposite direction to Jake's motion, so the total momentum of the system remains zero.
We can use the equation:
m1v1 + m2v2 = (m1 + m2)vf
where m1 and v1 are the mass and velocity of Jake and m2 and v2 are the mass and velocity of the boat and Robert before Jake starts walking. vf is the velocity of the boat and Robert after Jake reaches the front of the boat.
2. We can assume that Jake walks to the front of the boat in a straight line, which means that the boat moves in the opposite direction with the same speed.
We can also assume that the boat moves only a small distance compared to its length, so we can treat it as a point object.
Using the given values:
m1 = 59.5 kg
m2 = 87.5 kg + 83.0 kg = 170.5 kg
v1 = 0 m/s
v2 = 0 m/s
vf = -v1*m1/m2 = -0 m/s
Substituting these values into the equation and solving for vf, we get:
m1v1 + m2v2 = (m1 + m2)vf
0 + 0 = (59.5 kg + 170.5 kg)vf
vf = 0 m/s
This means that the boat and Robert do not move when Jake reaches the front of the boat. Therefore, the distance the boat moves away from the pier is zero.
To know more about momentum refer here
https://brainly.com/question/30677308#
#SPJ11
Gravitational force between two bodies is 5N When they are placed at the distance of 1om.. How much gravitational force will be produced if they are kept at the distance of 20m.
Answer:
F = 1.25 N
Explanation:
The equation to calculate Gravitational Force is
F = G (m1 . m2) / r^2
where G is gravitational constant, m1 and m2 are the mass of the 2 objects.
So, assuming that the G, m1, m2 is constant, the equation will be
F1 . [tex]r1^{2}[/tex]= F2 . [tex]r2^{2}[/tex]
Therefore,
F2 = F1 . [tex]r1^{2}[/tex] / [tex]r2^{2}[/tex]
And finally we just need to find F2 by inserting this value
F1 = 5N
r1 = 10m
r2 = 20m
I hope you can understand, let me know if you need more explanation.
young's double-slit experiment is performed with 568-nm light and a distance of 2.00 m between the slits and the screen. the tenth interference minimum is observed 7.08 mm from the central maximum. determine the spacing of the slits.
Answer:
yes
Explanation:
What voltage is required to give the plates of a 270-pF capacitor a charge of 7. 3×10−9C?
Express your answer to two significant figures and include the appropriate units.
NEED HELP
27 V voltage is required to give the plates of a 270-pF capacitor a charge of 7. 3× [tex]10^{-9}[/tex] C.
The voltage (V) required to give the plates of a capacitor a charge (Q) can be calculated using the formula
V = Q/C
Where C is the capacitance of the capacitor.
In this case, the charge Q is given as 7.3 × [tex]10^{-9}[/tex] C and the capacitance C is given as 270 pF (pico-farads).
However, it is best to convert the capacitance to farads to ensure that the units are consistent
270 pF = 270 × [tex]10^{-12}[/tex] F
Now, substituting the values into the formula, we get
V = Q/C = (7. 3× [tex]10^{-9}[/tex] C) / (270 × [tex]10^{-12}[/tex] F) = 27 V
Therefore, the voltage required to give the plates of the 270-pF capacitor a charge of 7.3 × [tex]10^{-9}[/tex] C is 27 V (volts).
To know more about voltage here
https://brainly.com/question/31526382
#SPJ4
you see a burglar run by you. the police come by a few seconds later and ask you for help. the most useful quantity you could give them is the burglar'smultiple choice question.velocity.acceleration.time.speed.
The most useful quantity you could give the police in this situation is the burglar's: Velocity.
Explanation:
1. Velocity: It provides both the speed and direction of the burglar, which would be helpful for the police to track and catch them.
2. Acceleration: It refers to the rate of change in velocity, but it wouldn't be as helpful without knowing the initial velocity and direction.
3. Time: It's not particularly helpful in this situation, as it does not give any information about the burglar's movement.
4. Speed: While it gives the rate of movement, it lacks the direction, which is crucial for the police to know where the burglar is headed.
To Learn More About Velocity
https://brainly.com/question/80295?source=archive
SPJ11
Two ropes support a load of 478 kg. The two ropes are perpendicular to each other, and the tension in the first rope is 2. 2 times that of the second rope. Find the tension in the second rope. The acceleration of gravity is 9. 8 m/s 2. Answer in units of N
The tension in the second rope is approximately 1937.98 N.
To find the tension in the second rope, we can start by calculating the total weight of the load. The weight (W) can be calculated using the formula:
W = mass × acceleration due to gravity
W = 478 kg × 9.8 m/s²
W = 4684.4 N
Let the tension in the second rope be T2, and the tension in the first rope is 2.2 times T2. Thus, the tension in the first rope is 2.2T2.
Since the two ropes are perpendicular to each other, we can use the Pythagorean theorem to find the resultant tension (which is equal to the weight of the load):
W² = (2.2T2)² + T2²
Substituting the value of W (4684.4 N):
(4684.4)² = (2.2T2)² + T2²
Now, we can solve for T2:
T2²(1 + 2.2²) = 4684.4²
T2²(5.84) = 21929539.36
T2² = 3755062.91
T2 = √3755062.91
T2 ≈ 1937.98 N
So, the tension in the second rope is approximately 1937.98 N.
To learn more about gravity, refer below:
https://brainly.com/question/31321801
#SPJ11
Two narrow slits are 0. 12 mm apart. Light of wavelength 550 nm illuminates the slits, causing an interference pattern on a screen 1. 0 m away. Light from each slit travels to the m=1 maximum on the right side of the central maximum.
Part A) How much farther did the light from the left slit travel than the light from the right slit?
Express your answer in nanometers
To answer your question about the distance traveled by light from the left slit compared to the right slit, we can use the formula for constructive interference in a double-slit experiment.
The formula for the path difference is given by:
ΔL = m * λ
where ΔL is the path difference (the extra distance traveled by light from the left slit compared to the right slit), m is the order of the maximum (m=1 in this case), and λ is the wavelength of the light (550 nm).
Now, we can plug in the values:
ΔL = 1 * 550 nm
ΔL = 550 nm
So, the light from the left slit traveled 550 nm farther than the light from the right slit in reaching the m=1 maximum on the right side of the central maximum.
To know more about double-slit experiment refer here
https://brainly.com/question/28108126#
#SPJ11
If you have a potential energy of 57 J. Now double your height, what is your new potential energy?
When you double your height, your new potential energy is 114 Joules.
How to find the new potential energy?The potential energy of an object depends on its height (h) and the force of gravity acting on it (usually denoted as "g"). The formula for gravitational potential energy is given by:
P = mgh
where P is the potential energy, m is the mass of the object, g is the acceleration due to gravity, and h is the height.
In this case, you have a potential energy of 57 J. Let's assume that the height (h) is constant, and we'll denote it as h1. So, we have:
P = mgh1 = 57 J
Now, you double your height, which means the new height is 2 times the original height (2h1). Let's denote the new height as h2. So, we have:
h2 = 2h1
Substituting this into the formula for potential energy, we get:
P = mgh2 = mg(2h1)
Since h2 = 2h1, we can rewrite the above expression as:
P = 2(mgh1)
But we know that PE1 = mgh1, so we can substitute this value into the equation:
PE2 = 2(PE1)
So, the new potential energy is:
P = 2*57J = 114J
Learn more about potential energy at:
https://brainly.com/question/14427111
#SPJ1
_______ assisted Anton Raphael Mengs with the iconography of his ceiling fresco, Parnasus, in the Villa Albani.
A) Johann Winckelmann
B) Cardinal Albani
C) Jacques Louis David
D) Joshua Reynolds
Answer:A
Explanation:
26.0 g of mercury is heated from 28°c to 175°c, and absorbs 545 joules of heat in the process. calculate the specific heat capacity of mercury.
The specific heat capacity of mercury is approximately 0.142 J/g°C.
To calculate the specific heat capacity of mercury, we can use the formula:
Q = mcΔT
where Q is the heat absorbed (545 J), m is the mass of mercury (26.0 g), c is the specific heat capacity, and ΔT is the change in temperature (175°C - 28°C).
First, let's find ΔT:
ΔT = 175°C - 28°C = 147°C
Now we can rearrange the formula to solve for c:
c = Q / (mΔT)
Plugging in the values:
c = 545 J / (26.0 g × 147°C) = 545 J / 3822 g°C
c ≈ 0.142 J/g°C
So, the specific heat capacity of mercury is approximately 0.142 J/g°C.
To learn more about heat, refer below:
https://brainly.com/question/1429452
#SPJ11
Explain how a balloon sticks to a wall.
What charge is the balloon?
What happens to the wall as you put the balloon near it? Why does this happen?
Include in your explanation the law of charges.
Be as detailed in your explanation as possible.
Answer:
We are assuming the balloon has been rubbed by a cloth, giving it extra negative charges.
After the balloon has been rubbed, it gains a negative charge because it gained some negative charges from the the cloth. This means there are more negative charges than positive ones to neutralize the effect, so the balloon gets a negative charge.
Due to the law of charges that states "Like charges repel each other; unlike charges attract," when the negatively charged balloon is brought near a wall, the wall's negative charges are repelled and pushed away from the balloon. Meanwhile, the positive charges in the wall are attracted to the balloon's negative charges. The strength of this attractive force is enough to keep the relatively light balloon attracted to the wall, which may sometimes keep it suspended in its place.
A water droplet falling in the atmosphere is spherical. assume that as the droplet passes through a cloud, it acquires mass at a rate proportional to ka where k is a constant (k>0) and a is its cross-sectional area. consider a droplet of initial radius r0 that enters a cloud with a velocity v0. assume no resistive force and show:
a. that the radius increases linearly with the time
b. that if r0 is negligibly small then the speed increases linearly with the time within the cloud.
A water droplet's radius will increase linearly with time if it acquires mass at a rate proportional to its cross-sectional area while passing through a cloud. This will cause its speed to also increase linearly with time within the cloud if its initial radius is very small.
a. As the water droplet falls through the cloud, it acquires mass at a rate proportional to its cross-sectional area. Since the droplet is initially spherical, its cross-sectional area is proportional to its radius squared, i.e., [tex]a \propto r^{2}[/tex]
Therefore, the rate of increase in mass of the droplet is proportional to k times r². By Newton's second law, the acceleration of the droplet is proportional to the net force acting on it, which is equal to the gravitational force minus the buoyant force.
Since there is no resistive force acting on the droplet, the buoyant force is proportional to the volume of the droplet, which is proportional to r³. Thus, the acceleration of the droplet is proportional to [tex](k \times r^2) - (constant \times r^3)[/tex]. Therefore, the radius of the droplet will increase linearly with time as it falls through the cloud.
b. If the initial radius of the droplet, r0, is negligibly small, then its initial mass and velocity will also be small. As it falls through the cloud, it will acquire mass at a rate proportional to its cross-sectional area, which is proportional to r². Therefore, the rate of increase in mass will be proportional to r².
The acceleration of the droplet will be proportional to the net force acting on it, which is equal to the gravitational force minus the buoyant force. Since the initial velocity of the droplet is small, the buoyant force will also be small, and can be neglected. Thus, the acceleration of the droplet will be proportional to r².
By Newton's second law, the velocity of the droplet will increase linearly with time, since the acceleration is proportional to r², which is proportional to the rate of increase in mass of the droplet.
In summary, if a water droplet falling in the atmosphere acquires mass at a rate proportional to its cross-sectional area as it passes through a cloud, then its radius will increase linearly with time, and if its initial radius is negligibly small, then its speed will increase linearly with time within the cloud.
To know more about mass refer here:
https://brainly.com/question/18064917#
#SPJ11
What is the spring constant of this spring?
Answer: D 400 N/m
Explanation:
Cliff height you are climbing in the high sierra where you suddenly find yourself at the edge of afog shrouded cliff to find the height of this cliff you drop a rock from the top and 10.0s later hear the sound of it hitting the ground at the foot of the cliff
The height of the cliff is approximately 490 meters (or about 1,607 feet).
To find the height of the cliff, we can use the kinematic equation:
[tex]h = 1/2 * g * t^2[/tex]
where h is the height of the cliff, g is the acceleration due to gravity (which is approximately 9.8 m/s²), and t is the time it takes for the rock to hit the ground.
In this case, we know that the time it takes for the rock to hit the ground is 10.0 seconds.
So we can plug in the values:
[tex]h = 1/2 * 9.8 m/s^2 * (10.0 s)^2[/tex]
h = 490 m
To know more about kinematic equation refer here
https://brainly.com/question/28712225#
#SPJ11
During the Vector Addition lab, Mac and Tosh start at the classroom door and walk 35. 0 m, north, 65. 0 m east, 54. 5 m south, 30. 5 m west, and 4. 5 m, north. Determine the magnitude and direction of the resultant displacement of Mac and Tosh
The magnitude of the resultant displacement of Mac and Tosh is 107.0 m, and the direction is northeast (45°).
What is displacement?Displacement is a vector quantity that describes the change in position of an object over time. It is the difference between the initial and final positions of an object, measured in a given direction. Displacement is a measure of the distance moved, regardless of the direction in which the object is traveling. In physics, displacement is a fundamental concept used to describe the motion of particles and objects. It is used to calculate the change in position of an object over a certain period of time and is used to describe the motion of objects in one-dimensional motion. It is also used to calculate the velocity and acceleration of an object.
North-South component = 35.0 m - 54.5 m = -19.5 m
East-West component = 65.0 m - 30.5 m = 34.5 m
Next, we use the Pythagorean theorem to calculate the magnitude of the resultant displacement:
Magnitude = √(-19.5 m)² + (34.5 m)² = √758.25 m = 107.0 m
Finally, we calculate the direction of the displacement from the ratio of the North-South component to the East-West component:
Direction = tan-1(-19.5 m/34.5 m) = -45°
Therefore, the magnitude of the resultant displacement of Mac and Tosh is 107.0 m, and the direction is northeast (45°).
To learn more about displacement
https://brainly.com/question/14422259
#SPJ4
A light ray of wavelength 589 nm traveling through air strikes a smooth, flat slab of crown glass at an angel of 30.0° to the normal. what is the angel of refraction (o.)? 15.2 degrees o 16.2 degrees 18.2 degrees 19.2 degrees
The angle of refraction is 19.2 degrees. The angle of refraction can be calculated using Snell's law, which states that n1sin(theta1) = n2sin(theta2), where n1 and n2 are the indices of refraction of the two mediums and theta1 and theta2 are the angles of incidence and refraction respectively.
In this case, the incident medium is air with an index of refraction of approximately 1, and the refractive index of crown glass is around 1.52. Therefore, we can write:
1sin(30.0°) = 1.52sin(theta2)
Solving for theta2, we get:
theta2 = sin⁻¹(1sin(30.0°)/1.52) = 19.2°
Therefore, the angle of refraction is 19.2 degrees.
To know more about the angle of refraction here:
https://brainly.com/question/2568474
#SPJ11
A traffic fanatic wants to estimate the maximum number of cars that can safely travel on a particular road at a given speed. She assumes that each car is 18 feet long, travels at speed s, and follows the car in front of it at a safe distance for that speed. She finds that the number N of cars that can pass a given spot per minute is modeled by the function N(s)
To estimate the maximum number of cars that can safely travel on a road at a given speed, the traffic fanatic should consider the free-flow speed, headway between cars at different speeds, and other factors affecting traffic flow.
The traffic fanatic's assumption is based on the concept of traffic flow theory, which aims to understand and predict the behavior of traffic on a road network. The safe distance between cars is known as the "headway" and it is dependent on the speed of the cars.
The traffic flow theory proposes that the maximum traffic flow occurs at a certain speed called the "optimal speed" or "free-flow speed". At this speed, the headway between cars is minimized, and the maximum number of cars can safely travel on the road.
The function N(s) represents the number of cars that can pass a given spot per minute at a given speed s. In this case, the function is modeled as N(s) = 150, which means that the maximum number of cars that can pass the given spot per minute is 150, regardless of the speed.
However, in reality, the number of cars that can pass a given spot per minute varies with speed. At speeds lower than the free-flow speed, the headway between cars increases, and the number of cars that can pass the given spot decreases. At speeds higher than the free-flow speed, the headway between cars decreases, and the number of cars that can pass the given spot also decreases due to increased congestion and potential accidents.
Therefore, to estimate the maximum number of cars that can safely travel on a particular road at a given speed, the traffic fanatic should consider the free-flow speed and the headway between cars at different speeds. She can use traffic flow models such as the Greenshields model or the Underwood model to estimate the traffic flow at different speeds and densities.
To learn more about traffic flow
https://brainly.com/question/26107179
#SPJ4
Calculate the pressure exerted by a girl on the ground if her mass is 50 kg and the area
of her shoes in contact with the ground is (a) 150 cm2 (high heels); (b) 400 cm2 (flat
soles). (take gravitational field strength g= 10 n kg)
The pressure exerted by the girl on the ground is (a) 33,333.33 N/m² (Pa) with high heels and (b) 12,500 N/m² (Pa) with flat soles.
To calculate the pressure exerted by the girl on the ground, we will use the formula:
Pressure (P) = Force (F) / Area (A)
Force (F) can be calculated using the formula F = mass (m) × gravitational field strength (g).
For this problem, mass (m) = 50 kg and gravitational field strength (g) = 10 N/kg.
First, let's calculate the force exerted by the girl:
F = m × g = 50 kg × 10 N/kg = 500 N
Now we will calculate the pressure exerted for both cases:
(a) High heels with an area of 150 cm²:
We need to convert the area to m², so A = 150 cm² × (1 m² / 10,000 cm²) = 0.015 m².
Pressure (P) = F / A = 500 N / 0.015 m² = 33,333.33 N/m² or Pa.
(b) Flat soles with an area of 400 cm²:
We need to convert the area to m², so A = 400 cm² × (1 m² / 10,000 cm²) = 0.04 m².
Pressure (P) = F / A = 500 N / 0.04 m² = 12,500 N/m² or Pa.
So, the pressure exerted by the girl on the ground is (a) 33,333.33 N/m² (Pa) with high heels and (b) 12,500 N/m² (Pa) with flat soles.
To learn more about area, refer below:
https://brainly.com/question/27683633
#SPJ11
When investigating a crime scene, an investigator finds bullet holes in the wall out the window,
across the street (about 100m away). These bullet holes are approximately 1. 1m off the
ground. The bullets from this particular weapon travel at a rate of 350m/s. Assuming the
weapon was fired horizontally, at what height was the weapon fired? This insight will be used to
narrow the search for a suspect.
When investigating a crime scene, it is crucial to gather as much evidence as possible to understand what happened. In this case, the investigator found bullet holes in the wall out the window, indicating that a weapon was fired horizontally. By analyzing the trajectory of the bullet, the investigator can determine at what height the weapon was fired.
One way to do this is by measuring the angle of the bullet holes in relation to the ground. If the bullet holes are at a lower angle, it suggests that the weapon was fired from a lower height. Conversely, if the bullet holes are at a higher angle, it indicates that the weapon was fired from a higher height.
Another way to determine the height of the weapon is by examining the location of the bullet holes on the wall. If the bullet holes are located closer to the ground, it suggests that the weapon was fired from a lower height. On the other hand, if the bullet holes are located higher up on the wall, it indicates that the weapon was fired from a higher height.
Knowing the height of the weapon can provide important insights into the crime. For example, if the weapon was fired from a low height, it suggests that the perpetrator was in close proximity to the victim. Conversely, if the weapon was fired from a high height, it could indicate that the perpetrator was located at a distance from the victim.
Overall, determining the height at which the weapon was fired is an important piece of evidence that can help investigators piece together what happened at the crime scene. By analyzing the trajectory of the bullet and the location of the bullet holes, investigators can gain valuable insights that can help them solve the crime.
To know more about investigating refer here
https://brainly.com/question/29365121#
#SPJ11