The magnitude of the normal force is 147 N.
The magnitude of Force Friction is 73.5 N.
The acceleration of the box is 0.21 m/s².
What is the magnitude of Force Normal?The magnitude of the normal force is calculated as follows;
Fn = mg
where;
m is the massg is acceleration due to gravityFn = 15 kg x 9.8 m/s²
Fn = 147 N
The magnitude of Force Friction is calculated as follows;
Ff = μFn
Ff = 0.5 x 147 N
Ff = 73.5 N
The acceleration of the box is calculated as follows;
F - Ff = ma
a = (F - ff)/m
a = (100 x cos40 - 73.5 ) / 15
a = 0.21 m/s²
Learn more about normal force here: https://brainly.com/question/14486416
#SPJ1
If I make a tortilla by mixing 55 grams of flour and 20 grams of water how much mass should my tortilla have
Answer:
Your tortilla would weigh 75 grams total.
Explanation:
55 grams of flour + 20 grams of water = 75 grams total
The tortilla should have a mass of 75 grams.
What is a mixture?A mixture is a combination of two or more substances that are not chemically bonded and can be separated by physical means. In a mixture, each substance retains its own chemical identity and properties. The properties of a mixture can vary depending on the relative amounts of the substances that are mixed together.
There are two main types of mixtures: homogeneous and heterogeneous.
1. Homogeneous mixtures: These are also called solutions, and they have a uniform composition throughout. The components of a homogeneous mixture are not visible to the bare eye and cannot be separated by simple mechanical means. Examples of homogeneous mixtures include salt water, sugar in water, and air.
2. Heterogeneous mixtures: These are mixtures that do not have a uniform composition throughout. The components of a heterogeneous mixture are visible to the bare eye, and they can be separated by mechanical means such as filtration, sedimentation, or decantation. Examples of heterogeneous mixtures include a mixture of oil and water, a salad, and a mixture of sand and pebbles.
Here in the Question,
The total mass of the tortilla will be the sum of the mass of flour and the mass of water used to make it. So, the tortilla should have a mass of:
55 grams (flour) + 20 grams (water) = 75 grams.
Therefore, the Total mass of the tortilla is 75 Grams.
To learn more about types of solutions click:
https://brainly.com/question/30239692
#SPJ2
« A 100 kg stunt woman falls from a three-story
building that is 9. 9 m high. If she falls into a net,
which slows her down over the course of 1 s,
what force did she experience while landing?
The stunt woman experienced a force of 1393 N while landing in the net.
A 100 kg stunt woman falls from a 9.9 m high building and is slowed down by a net over the course of 1 s. To calculate the force she experienced while landing, we first need to determine her velocity when hitting the net.
We can use the formula: v^2 = u^2 + 2as
where v is the final velocity, u is the initial velocity (0 m/s), a is the acceleration due to gravity (9.81 m/s^2), and s is the distance fallen (9.9 m).
v^2 = 0 + 2(9.81)(9.9)
v^2 = 194.118
v = √194.118 ≈ 13.93 m/s
Now, we can use the impulse-momentum theorem to find the force: Ft = mv - mu
where F is the force, t is the time taken to slow down (1 s), m is the mass (100 kg), and v and u are the final and initial velocities, respectively.
F(1) = (100)(13.93) - (100)(0)
F = 1393 N
To know more about the force, click here;
https://brainly.com/question/13191643
#SPJ11
20 points) How is BMI weight calculated?
Divide weight by 678.
Double weight.
Subtract weight from heart rate.
Multiply weight by 703.
BMI weight is calculated by D. Multiply weight by 703.
How to find BMI ?BMI (Body Mass Index) weight is calculated by dividing a person's weight in kilograms by their height in meters squared.
The formula for calculating BMI is: BMI = weight (kg) / height² (m²).
Therefore, the correct option for how BMI weight is calculated is Multiply weight by 703. This is because the weight is multiplied by 703 to convert it from pounds to kilograms, and the height is converted from feet and inches to meters before being squared and used in the formula.
Find out more on BMI at https://brainly.com/question/10091149
#SPJ1
what is the momentum of an 80 kg ice skater gliding across the ice at a speed of 5 m/s
momentum = 400 kg⋅m/s
we know that the relation between momentum, velocity, and mass is
P = mv
where p is the momentum
m is mass
v is velocity
now putting values we get,
P = 80x5
= 400 kg⋅m/s
What is the weight of car at 25th percentile and 75th percentile? of 1155,1100,1540,1760,1390,90,1610,1305,1685,1425,1365,1655,1465,1515,1130,1440,1275
The weight of the car at the 25th percentile is 1305, and the weight of the car at the 75th percentile is 1655, based on the given set of weights.
To find the weight of a car at the 25th and 75th percentiles, we need to sort the given weights in ascending order first, which gives us:
90, 1130, 1155, 1275, 1305, 1365, 1390, 1425, 1440, 1465, 1515, 1540, 1610, 1655, 1685, 1760.
The percentile is a measure used to divide a set of data into 100 equal parts. The 25th percentile represents the weight value below which 25% of the weights in the set lie, while the 75th percentile represents the weight value below which 75% of the weights in the set lie.
To find the weight at the 25th percentile, we first calculate the index corresponding to the 25th percentile:
[tex]Index = (25/100) \times (n + 1) = 4.25[/tex]
Since we cannot have a fraction of an index, we can round up to 5, which gives us the weight at the 25th percentile:
Weight at 25th percentile = 1305
Similarly, to find the weight at the 75th percentile, we calculate the index corresponding to the 75th percentile:
[tex]Index = (75/100) \times (n + 1) = 12.75[/tex]
Rounding up gives us an index of 13, which gives us the weight at the 75th percentile:
Weight at 75th percentile = 1655
In summary, the weight of the car at the 25th percentile is 1305, and the weight of the car at the 75th percentile is 1655, based on the given set of weights.
To know more about percentile refer here:
https://brainly.com/question/30589411#
#SPJ11
Two new materials have been discovered. One is shiny
and has a metallic look, while the other is dull and
has a non-metallic look. Although you think that one
is a conductor and the other an insulator, you want
to be certain. Describe a test you could do to test the
conductivity of these two materials.
Answer:
placing an object between two free ends of a wire in a circuit. the circuit must have a bulb, wires, crocodile clips and a switch (optional) .
Explanation:
get a material between the clips . if the bulb lights up, the object is a conductor and is it doesn't its an insulator.
Which observation supports a model of the nature of light in which light acts as a wave
The observation from the constructive interference supports the model of the wave nature of light. The correct option (A).
The observation of diffraction and interference lends weight to the idea that light behaves like a wave. When two or more waves interact with one another, interference occurs. It can be constructive (where the waves reinforce one another) or destructive (where the waves cancel one another out). When light waves from various sources overlap or pass through small gaps, this phenomenon can be seen.
Another property of waves, including light waves, is diffraction. When waves approach an obstruction or pass through an opening, they may bend or spread out. When light waves come into contact with sharp edges, slits, or other obstructions, diffraction patterns can be seen, and they are compatible with how waves behave.
Strong proof that light is a wave and that theories like the electromagnetic wave theory of light are correct can be found in the observations of interference and diffraction.
Hence, The observation from the constructive interference supports the model of the wave nature of light. The option is (A).
To learn more about Constructive interference, here:
https://brainly.com/question/31857527
#SPJ12
Complete Question:
Which observation supports a model of the nature of light in which light acts as a wave?
A. Constructive interference
B. Temperature change
C. Blackbody radiation
D. Photoelectric effect
A thermodynamicist claims to have developed a heat pump with a cop of 1. 7 when operating with thermal energy reservoirs at 273 k and 293 k. Is this claim valid?.
The calculated COP of approximately 14.65 is significantly different from the claimed COP of 1.7. Therefore, the claim made by the thermodynamicist is not valid. The actual COP of the heat pump, based on the given temperatures, is much higher than the claimed value.
To determine the validity of the thermodynamicist's claim regarding the Coefficient of Performance (COP) of their heat pump, we need to calculate the COP based on the given information and compare it to the claimed value.
The COP of a heat pump is defined as the ratio of the desired heat transfer (Qh) to the input work (Win):
COP = Qh / Win
Given:
Temperature of the cold reservoir (Tc) = 273 K
Temperature of the hot reservoir (Th) = 293 K
COP claimed by the thermodynamicist = 1.7
To calculate the COP, we need to know the heat transfer ratio between the hot and cold reservoirs. In a heat pump, heat is transferred from the cold reservoir to the hot reservoir against the natural flow of heat.
For an ideal heat pump, the COP is given by:
COP = Th / (Th - Tc)
Plugging in the given values:
COP = 293 K / (293 K - 273 K)
COP = 293 K / 20 K
COP ≈ 14.65
To know more about thermodynamicist refer here
https://brainly.com/question/29449209#
#SPJ11
Both objects are released from rest and the pulley turns without slipping the coefficient of kinetic friction between the 2kg object and the surface is 0. 40. Calculate the angular acceleration of the pulley.
a. 34. 25 rad/s^2
b. 36. 17 rad/s^2
c. 39. 22 rad/s^2
d. 46. 57 rad/s^2
The angular acceleration of the pulley is approximately [tex]39.22 rad/s^2[/tex].
What does the term "angular acceleration" mean?
The angular acceleration, which is frequently denoted by the symbol and stated in radians per second per second, is the rate at which the angular velocity changes over time.
Here is the calculation:
The net force acting on the 2 kg object is the difference between the tension in the string and the frictional force. Using Newton's second law, we can write:
[tex]F_{net} = ma\\T - f_k = ma[/tex]
The moment of inertia of the pulley can be calculated using the formula for the moment of inertia of a disk:
[tex]I = (1/2)mr^2[/tex]
The torque due to the tension can be calculated as:
[tex]\tau_T = T*(r/2)[/tex]
The torque due to the frictional force can be calculated as:
[tex]\tau_f = f_k*(r/2)[/tex]
The net torque can be calculated as the difference between the torque due to the tension and the torque due to the frictional force:
[tex]\tau_{net} = \tau_T - \tau_f[/tex]
Finally, the angular acceleration can be calculated using Newton's second law for rotational motion:
[tex]\tau_{net} = I*\alpha[/tex]
Substituting the values and solving for α, we get:
[tex]\alpha = (T - f_k)/(1/2mr^2) = (2/3)g(\mu_k - sin\theta)[/tex]
where g is the acceleration due to gravity, [tex]\mu_k[/tex] is the coefficient of kinetic friction, and θ is the angle of the incline.
Using the given values, we get:
[tex]\alpha = (2/3)9.81(0.40 - sin(30)) = 39.22 rad/s^2[/tex]
Therefore, the angular acceleration of the pulley is approximately [tex]39.22 rad/s^2[/tex].
To learn more about angular acceleration use:
https://brainly.com/question/13014974
#SPJ4
an airplane is flying at an elevation of 5150 feet, directly above a straight highway. two motorists are driving cars on the highway on opposite sides of the plane and the angle of depression to one car is 35 degrees and to the other car is 52 degrees, how far apart are the cars?
Answer:
7086.9 feet.
Explanation:
We can see that the two triangles formed by the plane and the cars are similar, because they share a common angle (90 degrees) and have corresponding angles that are equal (the angles of depression). Therefore, we can use the proportionality of corresponding sides to find the distance between the cars. Let x be the distance from the plane to the car with 35 degrees angle of depression, and y be the distance from the plane to the car with 52 degrees angle of depression. Then we have:
x / sin(35) = y / sin(52) = 5150 / sin(90)Cross-multiplying and solving for x and y, we get:x = 5150 x sin(35) / sin(90) x = 2957.8 feety = 5150 x sin(52) / sin(90) y = 4129.1 feetThe distance between the cars is the sum of x and y:d = x + y d = 2957.8 + 4129.1 d = 7086.9 feetThe answer is 7086.9 feet.
Two identical test dummies are each dropped from a height of 3. 00 m. The first is dropped onto the concrete, and the skull fractures. The 2nd is dropped in the same manner also onto concrete but is also wearing a bicycle helmet and the skull does not fracture. Use the terms force, impulse, and time to explain why the two identical test dummies dropped in the same manner had very different outcomes
Dummy without a helmet experienced a higher force of impact causing a fracture, while the helmet reduced the risk of fracture by absorbing some of the impact energy.
The difference in outcome between the two identical test dummies dropped from the same height can be explained by the concepts of force, impulse, and time.
Force refers to the push or pull exerted on an object, while impulse refers to the change in momentum caused by a force acting over time. Time, on the other hand, refers to the duration of an event or the period during which a force acts on an object.
When the first dummy was dropped onto the concrete without a helmet, the force of impact caused a significant impulse in a very short amount of time. The skull could not withstand this sudden change in momentum, resulting in a fracture.
However, the second dummy wearing a bicycle helmet experienced a lower force of impact due to the helmet's ability to absorb some of the impact energy. This spread out the impulse over a longer period of time, reducing the overall force acting on the skull and minimizing the risk of fracture.
In summary, the use of a bicycle helmet reduces the force of impact by absorbing some of the energy and increasing the time it takes for the impulse to act on the skull. This demonstrates the importance of protective gear in reducing the risk of injury in potentially hazardous situations.
To know more about force refer here:
https://brainly.com/question/26115859#
#SPJ11
what do we need to measure in order to determine a star's luminosity? what do we need to measure in order to determine a star's luminosity? apparent brightness and mass apparent brightness and temperature apparent brightness and distance
In order to determine a star's luminosity, we need to measure its apparent brightness and distance. Option C is correct.
Apparent brightness refers to the amount of light that we observe from a star here on Earth, and it is affected by both the star's luminosity and its distance from us. Therefore, in order to determine a star's luminosity, we need to know its distance from us so that we can correct for the effects of distance on the apparent brightness.
Once we know the star's apparent brightness and distance, we can use the inverse square law of light to calculate the star's luminosity. The inverse square law states that the apparent brightness of an object is inversely proportional to the square of its distance from us. By knowing the distance and apparent brightness of a star, we can calculate its luminosity, which is a measure of the total amount of energy that the star is emitting per unit time. Option C is correct.
To know more about the Luminosity, here
https://brainly.com/question/31102332
#SPJ4
A plane flying horizontally at an altitude of 1 mi and a speed of 510 mi/h passes directly over a radar station. find the rate at which the distance from the plane to the station is increasing when it is 2 mi away from the station.
The rate at which the distance from the plane to the station is increasing is 255(sqrt(3)) mi/h when the plane is 2 mi away from the station.
To solve this problem, we will use the Pythagorean theorem and related rates.
Let x be the horizontal distance from the radar station to the plane, y be the altitude of the plane, and z be the distance between the plane and the radar station. We are given that y = 1 mi and the speed of the plane is 510 mi/h. We want to find the rate at which z is increasing when z = 2 mi.
The Pythagorean theorem states that x^2 + y^2 = z^2. Differentiating both sides with respect to time t, we get:
2x(dx/dt) + 2y(dy/dt) = 2z(dz/dt)
Since the plane is flying horizontally and maintains a constant altitude, dy/dt = 0. We're given that dx/dt = 510 mi/h. Now, we need to find x when z = 2 mi. Using the Pythagorean theorem, we have:
x^2 + 1^2 = 2^2
x^2 = 3
x = sqrt(3)
Now, we can plug in the values for x, dx/dt, y, and z into the differentiated equation:
2(sqrt(3))(510) + 2(1)(0) = 2(2)(dz/dt)
Solving for dz/dt:
1020(sqrt(3)) = 4(dz/dt)
dz/dt = 255(sqrt(3)) mi/h
Thus, the rate at which the distance from the plane to the station is increasing is 255(sqrt(3)) mi/h when the plane is 2 mi away from the station.
To learn more about altitude, refer below:
https://brainly.com/question/4390102
#SPJ11
Why do nuclear reactions tend to produce more energy than chemical reactions?
A. In chemical reactions, the total amount of energy and mass is not conserved
B. In nuclear reactions, some mass is converted to energy
C. In Chemical reactions, some mass is converted to energy
D. In nuclear reactions, the total amount of energy and mass is not conserved
The correct answer is B. In nuclear reactions, some mass is converted to energy.
What is nuclear reaction?A nuclear reaction is the collision of two nuclei, or a nucleus and an external subatomic particle, to form one or more new nuclides. As a result, a nuclear reaction must result in the transformation of at least one nuclide.
The particle that is bombarding may be an alpha particle, a gamma-ray photon, a neutron, a proton, or a heavy ion.
Learn more about nuclear reactions here:
https://brainly.com/question/25387647
#SPJ1
Which has a larger angular velocity, the rubber stopper or the blue tape?
A. They are the same - the sweep out the same angular displacement (radians or degrees) in the same amount of time.
B. The rubber stopper because it is moving faster and traveling farther.
C. The blue tape because it is closer and therefore takes less time to make a revolution
They are the same - the sweep out the same angular displacement (radians or degrees) in the same amount of time. Option A
What is angular velocity?Angular velocity is how we measure how fast an object is rotating around an axis. It can be identifies with the symbol omega (ω) and has units of radians per second (rad/s).
Angular velocity may also be see as the rate of change of the angular position of an object with respect to time.
The formula used in calculatin it is
ω = Δθ/Δt
Find more exercises on angular velocity,;
https://brainly.com/question/12446100
#SPJ1
A ball is dropped from a height of 10 meters onto a hard surface so that the collision at the surface may be assumed elastic. Under such conditions the motion of the ball is
(A) simple harmonic with a period of about 1. 4 s
(B) simple harmonic with a period of about 2. 8 s
(C) simple harmonic with an amplitude of 5 m
(D) periodic with a period of about 2. 8 s but not simple harmonic
Under such conditions the motion of the ball is periodic with a period of about 2.02 s, but not simple harmonic. Therefore, the correct answer is option D.
When a ball is dropped from a height and collides elastically with a hard surface, its motion is not simple harmonic because the force acting on the ball is not proportional to its displacement from a fixed point. Instead, the motion is periodic, meaning it repeats itself after a fixed period of time.
In this case, we can use the laws of conservation of energy and momentum to determine the motion of the ball. When the ball is dropped, it has potential energy equal to its mass times the acceleration due to gravity times its height above the surface.
As the ball falls, this potential energy is converted into kinetic energy, and when it collides with the surface, the momentum of the ball is transferred to the surface, causing the ball to rebound.
The time it takes for the ball to fall and rebound can be calculated using the equation:
[tex]time = 2 \times \sqrt{(height / acceleration\;due\;to \;gravity)}[/tex]
[tex]time = 2 \times \sqrt{(10 m / 9.8 m/s^2)}[/tex]
time = 2.02 s
Therefore, the motion of the ball is periodic with a period of about 2.02 s, but not simple harmonic.
In summary, when a ball is dropped and collides elastically with a hard surface, its motion is not simple harmonic because the force acting on the ball is not proportional to its displacement.
Instead, the motion is periodic, meaning it repeats itself after a fixed period of time. Using the laws of conservation of energy and momentum, we can determine the period of the motion. In this case, the ball's motion is periodic with a period of about 2.02 s. Therefore, the correct answer is option D.
To know more about motion refer here:
https://brainly.com/question/29255792#
#SPJ11
What is the electric potential at points A , B , and C in (Figure 1)? Suppose that q = 1. 5 nC , r1 = 1. 0 cm , and r2 = 2. 1 cm
The electric potential at point A is 1,348.5 V, at point B is 641.5 V
To determine the electric potential at points A, B, and C in Figure 1, we will use the following formula for electric potential (V) due to a point charge (q):
V = k * q / r
where k is the electrostatic constant (approximately 8.99 x 10^9 N m^2/C^2), q is the charge (1.5 nC or 1.5 x 10^-9 C), and r is the distance from the charge to the point of interest.
For point A (r1 = 1.0 cm or 0.01 m):
V_A = (8.99 x 10^9 N m^2/C^2) * (1.5 x 10^-9 C) / (0.01 m)
V_A = 1.3485 x 10^3 V
For point B (r2 = 2.1 cm or 0.021 m):
V_B = (8.99 x 10^9 N m^2/C^2) * (1.5 x 10^-9 C) / (0.021 m)
V_B = 641.5 V
For point C, we need to know the distance from the charge to point C. If it's not provided, we cannot calculate the electric potential at point C.
In summary, the electric potential at point A is 1,348.5 V, at point B is 641.5 V, and we cannot calculate the electric potential at point C without knowing the distance.
To learn more about distance, refer below:
https://brainly.com/question/15172156
#SPJ11
A bar of length L = 0. 36m is free to slide without friction on horizontal rails. A uniform magnetic field B = 2. 4T is directed into the plane. At one end of the rails there is a battery with emf = 12V and a Switch S. The bar has the mass 0. 90kg and resistance 5. 0ohm. Ignore all the other resistance in the circuit. The switch is closed at time t = 0. A) Just after the switch is closed, what is the acceleration of the bar? b)what is the acceleration of. The bar when its speed is 2. 0m/s? c) what is the bar's terminal speed?
The acceleration of the bar just after the switch is closed is [tex]6.91 m/s^2[/tex]. When the bar's speed is 2.0 m/s, its acceleration is zero. The terminal speed of the bar is 1.49 m/s.
To solve this problem, we will use the equation of motion for an object under the influence of a force and the equation for the current in a circuit under the influence of an emf and resistance.
a) Just after the switch is closed, the current in the circuit will be given by Ohm's Law:
I = emf / R = 12 V / 5.0 Ω = 2.4 A
The bar will experience a magnetic force due to the magnetic field that is perpendicular to its motion. The magnetic force can be calculated using the formula:
F = BIL
where B is the magnetic field, I is the current, and L is the length of the bar. The bar will experience a force in the direction opposite to its motion. Therefore, the acceleration of the bar can be calculated using Newton's second law:
a = F / m = (BIL) / m
Substituting the given values, we get:
a = (2.4 T)(2.4 A)(0.36 m) / 0.90 kg = [tex]6.91 m/s^2[/tex]
Therefore, the acceleration of the bar just after the switch is closed is [tex]6.91 m/s^2[/tex].
b) To calculate the acceleration of the bar when its speed is 2.0 m/s, we need to use the equation of motion:
v = u + at
where v is the final velocity, u is the initial velocity (which is zero in this case), a is the acceleration, and t is the time.
We can rearrange this equation to solve for time:
t = (v - u) / a = v / a
Substituting the given values, we get:
t = 2.0/ 6.91 = 0.289 s
Now we can use the equation of motion again to calculate the distance traveled by the bar during this time:
[tex]$s = ut + \frac{1}{2}at^2 = \frac{1}{2}at^2$[/tex]
Substituting the given values, we get:
[tex]$s = \frac{1}{2}(6.91 , \mathrm{m/s^2})(0.289 , \mathrm{s})^2 = 0.115 , \mathrm{m}$[/tex]
Therefore, the distance traveled by the bar when its speed is 2.0 m/s is 0.115 m. To calculate the acceleration, we can use the formula:
a = F / m = (BIL) / m
Substituting the given values and using the fact that the bar is now moving at a constant speed (i.e., the net force on the bar is zero), we get:
a = 0
Therefore, the acceleration of the bar when its speed is 2.0 m/s is zero.
c) The terminal speed of the bar can be calculated using the formula:
[tex]$v_{\text{terminal}} = \frac{\text{emf}}{\text{BRL}} \cdot \left(1 - e^{-\frac{\text{BRL}}{\text{m}}}\right)$[/tex]
where emf is the emf of the battery, B is the magnetic field, R is the resistance of the bar, L is the length of the bar, and m is the mass of the bar.
Substituting the given values, we get:
[tex]$v_{\text{terminal}} = \frac{12 , \mathrm{V}}{(2.4 , \mathrm{T})(5.0 , \Omega)(0.36 , \mathrm{m})} \cdot \left(1 - e^{-\frac{(2.4 , \mathrm{T})(5.0 , \Omega)(0.36 , \mathrm{m})}{0.90 , \mathrm{kg}}}\right)$[/tex]
Simplifying this expression, we get:
v_terminal = 1.49 m/s
Therefore, the terminal speed of the bar is 1.49 m/s.
To learn more about acceleration
https://brainly.com/question/12550364
#SPJ4
Which scientist is credited with the development of modern models of our solar system using the heliocentric model?.
The scientist credited with the development of modern models of our solar system using the heliocentric model is Nicolaus Copernicus. Copernicus was a Polish astronomer who lived from 1473 to 1543.
His groundbreaking work, "De revolutionibus orbium coelestium" (On the Revolutions of the Heavenly Spheres), was published in 1543 and laid the foundation for our understanding of the solar system today.
Before Copernicus, the prevailing belief was the geocentric model, which placed Earth at the center of the universe with all celestial bodies orbiting around it. This model, developed by the Greek astronomer Ptolemy, was accepted for over a thousand years.
Copernicus challenged this idea with his heliocentric model, which proposed that the Sun was at the center of the solar system and that the planets, including Earth, orbited around it in a circular motion.
His work built on the ideas of earlier astronomers, such as Aristarchus of Samos, who also proposed a heliocentric model but lacked sufficient evidence to support it.
Although initially met with skepticism, Copernicus' heliocentric model eventually gained acceptance thanks to the work of later astronomers like Galileo Galilei, Johannes Kepler, and Isaac Newton.
These scientists provided further evidence and refined the model to include elliptical orbits, leading to our current understanding of the solar system.
In summary, Nicolaus Copernicus is the scientist credited with the development of modern models of our solar system using the heliocentric model, which replaced the outdated geocentric model and revolutionized our understanding of the universe.
To know more about Nicolaus Copernicus refer here
https://brainly.com/question/16066049#
#SPJ11
How much force is required to pull a spring 0.412 m from its equilibrium position if
the spring constant is 2,441.5 n/m?
The force required to pull the spring 0.412 m from its equilibrium position is 1004.41 N.
The force required to pull a spring can be calculated using Hooke's law, which states that the force exerted by a spring is proportional to its displacement from its equilibrium position.
The formula for Hooke's law is F = -kx, where F is the force exerted, k is the spring constant, and x is the displacement from the equilibrium position.
Substituting the given values into the formula, we have: F = -kx, F = -(2441.5 N/m)(0.412 m), F = -1004.41 N
The negative sign indicates that the force is in the opposite direction of the displacement, meaning that the force is pulling the spring back towards its equilibrium position. Therefore, the force required to pull the spring 0.412 m from its equilibrium position is 1004.41 N.
To know more about Hooke's law, refer here:
https://brainly.com/question/29126957#
#SPJ11
To work a ball of dough with the fingertips or heels of the hands by repeating press, fold, and turn motions is to
To work a ball of dough with the fingertips or heels of the hands by repeating press, fold, and turn motions is to knead the dough.
This process helps develop the gluten in the dough, resulting in a smooth and elastic texture.
Here's a more detailed explanation of the kneading process and its effects on the dough:
Gluten Development: Gluten is a network of proteins found in wheat flour. When the dough is kneaded, the proteins in the flour, called glutenin and gliadin, combine and form gluten strands.
Kneading promotes the alignment and cross-linking of these protein strands, creating a network that gives the dough its structure and elasticity.
Incorporation of Air: During the kneading process, air is also incorporated into the dough. The repeated folding and pressing motions trap air bubbles within the dough, contributing to its light and airy texture once baked.
Hydration and Consistency: Kneading helps distribute moisture evenly throughout the dough. This ensures that all the flour particles are hydrated, resulting in a consistent texture and flavor.
It also helps to achieve the desired consistency of the dough, adjusting it from a sticky or shaggy state to a smooth and workable one.
Activation of Yeast: Kneading provides mechanical action that activates the yeast present in the dough. Yeast is a microorganism that ferments the sugars in the dough, producing carbon dioxide gas.
Kneading helps distribute the yeast evenly, promoting fermentation and allowing the dough to rise.
Development of Flavor: Kneading also impacts the flavor of the dough. As the dough is worked, enzymes naturally present in the flour are activated, converting starches to sugars.
These sugars then undergo fermentation by yeast, resulting in the release of various flavorful compounds that contribute to the overall taste of the final baked product.
To learn more about yeast, refer below:
https://brainly.com/question/28884452
#SPJ11
A radio wave transmits 2. 12 w/m2 average power per unit area. what is the peak value of the associated magnetic field? (μ0 = 4π × 10−7 t⋅m/a and c = 3. 00 × 108 m/s)
The peak value of the associated magnetic field is approximately 1.19×[tex]10^{6}[/tex] Tesla.
To find the peak value of the associated magnetic field, we can use the formula:
Peak magnetic field (B) = √(2P/μ0c)
Where P is the average power per unit area, μ0 is the permeability of free space, and c is the speed of light.
Substituting the given values, we get: B = √(2(2.12)/4π×[tex]10^{7}[/tex]×3×[tex]10^{8}[/tex])
Simplifying the expression, we get: B = √(1.41×[tex]10^{11}[/tex])
Therefore, the peak magnetic field is: B = 1.19×[tex]10^{6}[/tex] T
So the peak value of the associated magnetic field is approximately 1.19×[tex]10^{6}[/tex] Tesla.
To know more about magnetic field, refer here:
https://brainly.com/question/23096032#
#SPJ11
A 87 kg weight-watcher wishes to climb a
mountain to work off the equivalent of a large
piece of chocolate cake rated at 948 (food)
Calories. How high must the person climb? The
acceleration due to gravity is 9. 8 m/s
2
and 1
food Calorie is 103
calories. Answer in units of km
The weight-watcher must climb: approximately 4.653 km to work off the equivalent of a large piece of chocolate cake rated at 948 food Calories.
To determine how high the person must climb, we'll first convert food Calories to calories, then use the formula for potential energy.
1 food Calorie = 10^3 calories, so 948 food Calories = 948 x 10^3 = 948,000 calories.
Potential energy (PE) is given by the formula: PE = mgh, where m is the mass, g is the acceleration due to gravity (9.8 m/s^2), and h is the height.
We can rearrange the formula to solve for the height (h): h = PE / (mg)
First, convert calories to joules: 1 calorie = 4.184 joules, so 948,000 calories = 3,968,112 joules.
Now, substitute the values into the formula:
h = 3,968,112 J / (87 kg x 9.8 m/s^2) = 3,968,112 / 852.6 ≈ 4653.24 meters
To convert meters to kilometers, divide by 1000:
4653.24 m / 1000 = 4.65324 km
So, the weight-watcher must climb approximately 4.653 km to work off the equivalent of a large piece of chocolate cake rated at 948 food Calories.
To know more about Calories, refer here:
https://brainly.com/question/3541581#
#SPJ11
Suppose that water waves coming into a dock have a velocity of 1.2 m/s and a wavelength of 2.4 m. with what frequency do these waves meet the dock
The frequency with which these waves meet the dock is 0.5 Hz.
To calculate the frequency of the water waves meeting the dock, you can use the formula:
Frequency (f) = Velocity (v) / Wavelength (λ)
Given that the velocity (v) is 1.2 m/s and the wavelength (λ) is 2.4 m, you can plug in these values into the formula:
f = 1.2 m/s / 2.4 m
f = 0.5 Hz
So, the frequency with which these waves meet the dock is 0.5 Hz.
To learn more about frequency, refer below:
https://brainly.com/question/5102661
#SPJ11
Two asteroids each have mass of 1. 41 x 10^14 kg. The strength of the gravitational force between them is 1,030 N. Calculate the distance between the asteroids
The distance between the two asteroids is approximately [tex]1.39 * 10^9[/tex]meters.
The gravitational force between two objects can be calculated using the formula:
[tex]F = G * (m_1 * m_2) / r^2[/tex]
where F is the gravitational force, G is the gravitational constant
[tex](6.67 * 10^{-11} Nm^2/kg^2)[/tex].
[tex]m_1[/tex]and [tex]m_2[/tex] are the masses of the two objects, and r is the distance between them.
In this case, we are given that:
[tex]m_1=m_2=1.41 * 10^{14} kg[/tex]
F = 1,030 N
G = [tex]6.67 *10^{-11} Nm^2/kg^2[/tex]
We can rearrange the formula to solve for r:
r = [tex]\sqrt{((G * m_1 * m_2) / F)}[/tex]
Plugging in the given values, we get:
r = [tex]\sqrt{((6.67 * 10^{-11} Nm^2/kg^2 * 1.41 * 10^{14} kg * 1.41 x 10^{14} kg) / 1,030 N) }[/tex]
r = [tex]1.39 * 10^9 meters[/tex]
To know more about gravitational force refer here
https://brainly.com/question/12528243#
#SPJ11
OBSERVATION: A shiny red rock is sitting at the bottom of a swimming pool. You grab a long stick and poke it into the pool aiming for the rock, but the stick overshot the rock by a lot. ANSWER GUIDE: Use concepts from L3 and L4 to explain two aspects of this observation: (1) Why was the rock in a different position than you thought it was? (2) Why does the rock appear red? What happened to the other colors in the white sunlight?
(1) The rock came to be in a various position than you thought it was by way of the wonder of refraction. The rock's position seemed different due to light refraction as it travels at varying speeds through different mediums.
2. Rock looks red as it absorbs all colors of sunlight except red.
2b. When white light enters water, it refracts and splits into various colors.
What is the concepts about?This causes the object to perform at a different position than it literally is. In this case, the light indications coming from the rock were bent when they entered the water, making the rock to appear at a more ignorant wisdom than it actually was.
Therefore, in response to question 2, rock appears red by way of the selective assimilation and reflection of light. The rock absorbs all of the banner of silvery light except for flaming, which is mirrored back to our eyes. This is because the microscopic structure of the rock absorbs all the banner except that red, that is reflected back.
Learn more about Rock from
https://brainly.com/question/398139
#SPJ1
Choose the correct statement describing, what will you see if you look at them with a telescope that has an angular resolution of 0. 5 arcsecond
If you look at them with a telescope that has an angular resolution of 0. 5 arcsecond, you will see two distinct stars. Therefore, the correct statement is option A.
An angular resolution of 0.5 arcseconds means that the telescope can distinguish between two objects that are at least 0.5 arcseconds apart. This is because angular resolution is the smallest angle between two objects that can be distinguished as separate entities.
In this case, if the two stars are separated by more than 0.5 arcseconds, they will be seen as two distinct stars. However, if they are separated by less than 0.5 arcseconds, they may appear as a single blurred image, which is known as the telescope's point spread function.
This is because the light from each star is diffracted by the telescope's aperture, causing them to overlap and blur together.
If the stars are separated by more than the telescope's angular resolution, they will be seen as separate and distinct points of light. Therefore, option (a) is the correct statement.
In summary, with an angular resolution of 0.5 arcseconds, a telescope can distinguish between two objects that are at least 0.5 arcseconds apart.
If the two stars are separated by more than 0.5 arcseconds, they will appear as two distinct stars, but if they are closer together, they may appear as a single blurred image.
To know more about angular resolution refer here:
https://brainly.com/question/30575514#
#SPJ11
Complete Question:
Choose the correct statement describing, what will you see if you look at them with a telescope that has an angular resolution of 0.5 arcsecond.
a. Two distinct stars.
b. One point of light that is the blurred image of both stars.
c. Nothing at all.
on how many factors amount of energy carried by wave depends?
Answer:
The amount of energy carried by a wave depends on two factors:
1. Amplitude: The amplitude of a wave is the maximum displacement of the particles of the medium from their resting position. The greater the amplitude of the wave, the more energy it carries.
2. Frequency: The frequency of a wave is the number of complete cycles of the wave that occur in one second. The higher the frequency of the wave, the more energy it carries.
A car is driven 215 km west and then 98 km south west (45 degree). a)what is the displacement of the car from the origin point? b) what is the directions
A car is driven 215 km west and then 98 km southwest (45 degrees). The total displacement from the origin point is 224 km. The direction of the car from the origin point is approximately 18.9° west of south.
a) To determine the displacement of the car from the origin point, we can use the Pythagorean theorem. Let's consider the westward direction as the x-axis and the southward direction as the y-axis.
The car has travelled 215 km west and 98 km at a 45-degree angle southwest. We can break down the southwest direction into its x and y components as follows:
x-component = [tex]98\;cos (45^{\circ}) = 69.3\;km[/tex]
y-component = [tex]98\;sin (45^{\circ}) = 69.3\;km[/tex]
Therefore, the total displacement from the origin point can be calculated as follows:
displacement = [tex]\sqrt{[(215\;km)^2 + (69.3\;km)^2][/tex]
displacement = 224 km
b) To determine the direction of the car from the origin point, we can use trigonometry to find the angle between the displacement vector and the x-axis:
angle = [tex]tan^{-1}(69.3\;km / 215\;km)[/tex]
[tex]angle \approx 18.9^{\circ}[/tex] west of south
Therefore, the direction of the car from the origin point is approximately 18.9° west of south.
In summary, we can determine the displacement of a car from its origin point by using the Pythagorean theorem and breaking down any diagonal components into their x and y components. We can then use trigonometry to find the direction of the displacement vector relative to a given axis.
To know more about displacement refer here:
https://brainly.com/question/29769926#
#SPJ11
Complete Question:
A car is driven 215 km west and then 98 km south west (45 degree).
a)what is the displacement of the car from the origin point?
b) what is the directions of the car from the origin point?
6) In a purely electric vehicle, energy usually is stored in batteries. The stored energy is used to
power the vehicle until the energy is depleted, and then energy has to be stored once more by
recharging the batteries. An electric wheelchair has a mass of 26 kg and is custom–designed for a
person with a mass of 80. 0 kg. The stored energy available in its batteries is 2. 4106
J. The
wheelchair motor requires a power of 340. 0 W for driving under typical conditions. This is
sufficient to propel the person in the wheelchair along at a speed of 24 km/h.
a. Determine the work done by the motor when the wheelchair starts at rest and speeds up to
its normal speed.
b. Determine the maximum distance that the wheelchair can travel on a horizontal surface at its
normal speed, using its stored energy. (Ignore the energy needed for it to speed up when it
starts. )
c. Suppose that 0. 023 percent of the power required for driving is expended against drag due
to the flexing of the wheelchair’s soft rubber tires. Calculate the magnitude of the drag force
The magnitude of the Drag force is 0.0117 N
a) To determine the work done by the motor when the wheelchair starts at rest and speeds up to its normal speed, we can use the work-energy theorem:
Work = (1/2) * m * (vf^2 - vi^2)
Where m is the total mass of the wheelchair and person (26 kg + 80 kg = 106 kg), vf is the final speed (24 km/h = 6.67 m/s), and vi is the initial speed (0 m/s).
Work = (1/2) * 106 kg * (6.67 m/s)^2
Work ≈ 1,491.1 J
b) To determine the maximum distance the wheelchair can travel on a horizontal surface at its normal speed, we can use the following formula:
Distance = (Stored energy) / (Power * Time)
First, we need to calculate the time that the wheelchair can run at normal speed:
Time = (Stored energy) / (Power)
Time = 2.4 * 10^6 J / 340 W
Time ≈ 7,058.8 s
Now we can calculate the distance:
Distance = (6.67 m/s) * (7,058.8 s)
Distance ≈ 47,102.4 m
c) To calculate the magnitude of the drag force due to the flexing of the wheelchair's soft rubber tires, we can use the following formula:
Drag force = (Power expended against drag) / (speed)
First, we need to calculate the power expended against drag:
Power expended against drag = 0.00023 * 340 W
Power expended against drag ≈ 0.0782 W
Now we can calculate the drag force:
Drag force = 0.0782 W / 6.67 m/s
Drag force ≈ 0.0117 N
To learn more about magnitude, refer below:
https://brainly.com/question/14452091
#SPJ11