Answer:
Step-by-step explanation:
The question has typographical errors. The correct question is:
"A 12-foot ladder is leaning against a building. If the bottom of the ladder is sliding along the pavement directly away from the building at 3 feet/second, how fast is the top of the ladder moving down when the foot of the ladder is 5 feet from the wall?
Solution:
The ladder forms a right angle triangle with the ground. The length of the ladder represents the hypotenuse.
Let x represent the distance from the top of the ladder to the ground(opposite side)
Let y represent the distance from the foot of the ladder to the base of the wall(adjacent side)
The bottom of the ladder is sliding along the pavement directly away from the building at 3ft/sec. This means that y is increasing at the rate of 3ft/sec. Therefore,
dy/dt = 3 ft/s
The rate at which x is reducing would be
dx/dt
Applying Pythagoras theorem which is expressed as
Hypotenuse² = opposite side² + adjacent side², it becomes
x² + y² = 12²- - - - - - - -1
Differentiating with respect to time, it becomes
2xdx/dt + 2ydy/dt = 0
2xdx/dt = - 2ydy/dt
Dividing through by 2x, it becomes
dx/dt = - y/x ×dy/dt- - - - - - - - - - 2
Substituting y = 5 into equation 1, it becomes
x² + 5 = 144
x² = 144 - 25 = 119
x = √119 = 10.91
Substituting x = 10.91, dy/dt = 3 and y = 5 into equation 2, it becomes
dx/dt = - 5/10.91 × 3
dx/dt = - 1.37 ft/s
Ben bought 4 volleyballs and 5 footballs for $352.65 altogether. If Ben’s brother bought 2 volleyballs and 4 footballs for $249.12 altogether, what was the price of each football?
Answer:
$48.53
Step-by-step explanation:
The purchases can be written in equation form as ...
4v +5f = 352.65
2v +4f = 249.12
Doubling the second equation and subtracting the first gives ...
2(2v +4f) -(4v +5f) = 2(249.12) -(352.65)
3f = 145.59 . . . . simplify
f = 48.53 . . . . . . divide by 3
The price of each football was $48.53.
If y = x² + 2x,
find the value of y when x = 5
_____________________________
Hey!!
Solution,
X=5
Now,
y=x^2+2x
=(5)^2+2*5
=25+10
= 35
So the value of y is 35
hope it helps
Good luck on your assignment
___________________________
For the given equation y = x² + 2x, the value of y when x = 5 is, 35
What is an Equation ?An equation is a mathematical term, which indicates that the value of two algebraic expressions are equal. There are various parts of an equation which are, coefficients, variables, constants, terms, operators, expressions, and equal to sign.
For example, 3x+2y=0.
Types of equation
1. Linear Equation
2. Quadratic Equation
3. Cubic Equation
Given that,
An equation, y = x² + 2x
The value of y when x is equal to 5 = ?
after putting value of x in a equation
⇒ y = 5² + 2 × 5
⇒ y = 25 + 10
⇒ y = 35
Hence, the value of y is 35
To know more about Equation check:
https://brainly.com/question/1529522
#SPJ2
Find the area of the triangle
Answer:
54
Step-by-step explanation:
A = (9*12)/2
A = 9*6
A = 54
Answer:54
Step-by-step explanation:
multiply 9 and 12 then divide by 2 because a triangle is half of a square
A Cepheid variable star is a star whose brightness alternately increases and decreases. For a certain star, the interval between times of maximum brightness is 4.2 days. The average brightness of this star is 3.0 and its brightness changes by ±0.25. In view of these data, the brightness of the star at time t, where t is measured in days, has been modeled by the function B(t) = 3.0 + 0.25 sin 2πt 4.2 . (a) Find the rate of change of the brightness after t days. dB dt =
Answer:
a) [tex]\frac{dB}{dt} = \frac{5\pi}{4.2} \cdot \cos \left(2\pi\cdot \frac{t}{4.2} \right)[/tex], b) [tex]\frac{dB}{dt}\approx 5.595[/tex]
Step-by-step explanation:
a) The rate of change of the brightness of the Cepheid can be determined by deriving the function in time:
[tex]\frac{dB}{dt} = \left(\frac{2\pi}{4.2} \right)\cdot 0.25\cdot \cos (2\pi\cdot \frac{t}{4.2})[/tex]
[tex]\frac{dB}{dt} = \frac{5\pi}{4.2} \cdot \cos \left(2\pi\cdot \frac{t}{4.2} \right)[/tex]
b) The rate of increase after one day is:
[tex]\frac{dB}{dt} = \frac{5\pi}{4.2} \cdot \left(2\pi \cdot \frac{1}{4.2} \right)[/tex]
[tex]\frac{dB}{dt}\approx 5.595[/tex]
ABDC is a rhombus with side length 10cm
angle ADC=40degrees
DAC is a sector of a circle with center D
BAC is a sector of a circle with center B
CALCULATE THE SHADED AREA (in cm2)
2- = - 6 – 4.0
Solve for x:
Simplify the expression and then evaluate it for the given value of the variable: (6−2x)+(15−3x) for x=−0.2
PLEASE HELP!!!!!!
Answer:
20
Step-by-step explanation:
The simplified expression is -5x+21
-5(0.2)+21=
-1+21= 20
Answer:
24
Step-by-step explanation:
f(x)= (6−2x)+(15−3x)
x=-0.2
f(-0.2)=(6−2(-0.2)+(15−3(-0.2))
f(-0.2)=(6+0.4)+(15+0.6)
f(-0.2)=6.4+15.6
f(-0.2)=22
a line has a slope of -3/4 and passes through the point (-5, 4). what is the equation of the line?
Answer:
y = -3/4x-1/4
Step-by-step explanation:
The slope intercept form of a line is
y = mx+b
where m is the slope and b is the y intercept
y = -3/4x +b
We have a point (-5,4)
4 = -3/4 (-5) +b
Changing to a common denominator
16/4 = 15/4 +b
subtracting 15/4 from each side
16/4-15/4 = -15/4 +15/4 +b
1/4 = b
y = -3/4x-1/4
Answer:
book
Step-by-step explanation:
kmgktn
The weekly salaries of sociologists in the United States are normally distributed and have a known population standard deviation of 425 dollars and an unknown population mean. A random sample of 22 sociologists is taken and gives a sample mean of 1520 dollars.
Find the margin of error for the confidence interval for the population mean with a 98% confidence level.
z0.10 z0.05 z0.025 z0.01 z0.005
1.282 1.645 1.960 2.326 2.576
You may use a calculator or the common z values above. Round the final answer to two decimal places.
Answer:
[tex] ME =z_{\alpha/2} \frac{\sigma}{\sqrt{n}}[/tex]
The confidence level is 0.98 and the significance is [tex]\alpha=1-0.98 =0.02[/tex] and [tex]\alpha/2 =0.01[/tex] and the critical value using the table is:
[tex]z_{\alpha/2}= 2.326[/tex]
And replacing we got:
[tex] ME=2.326 \frac{425}{\sqrt{22}}= 210.760\ approx 210.76[/tex]
Step-by-step explanation:
For this case we have the following info given:
[tex]\sigma = 425[/tex] represent the population deviation
[tex] n =22[/tex] the sample size
[tex]\bar X =1520[/tex] represent the sample mean
We want to find the margin of error for the confidence interval for the population mean and we know that is given by:
[tex] ME =z_{\alpha/2} \frac{\sigma}{\sqrt{n}}[/tex]
The confidence level is 0.98 and the significance is [tex]\alpha=1-0.98 =0.02[/tex] and [tex]\alpha/2 =0.01[/tex] and the critical value using the table is:
[tex]z_{\alpha/2}= 2.326[/tex]
And replacing we got:
[tex] ME=2.326 \frac{425}{\sqrt{22}}= 210.760\ approx 210.76[/tex]
Simplify (1+√3) (2-√3).
Answer:
[tex] \sqrt{3} - 1[/tex]
Step-by-step explanation:
[tex](1 + \sqrt{3} )(2 - \sqrt{3} ) \\ 2 - \sqrt{3} + 2 \sqrt{3} - 3 \\ = \sqrt{3} - 1[/tex]
A company that manufactures toothpaste is studying five different package designs.Assuming that one design is just as likely to be selected by a consumer as any other design, what selection probability would you assign to each of the package designs (to 2 decimals)
Answer:
The selection probability to be assigned to each of the package designs is 0.20
Step-by-step explanation:
Firstly, we need to assume that one design is just as likely to be selected by a consumer as any other design
so the probability of selecting any of the design is same and that is 1/5 = 0.20
Thus, what we are trying to say is that each of the package designs have an equal selection probability of 0.20
Please answer this correctly
Answer:
24.99
Step-by-step explanation:
If the area of the quarter circle is 38.465, then the equation to find this would be
3.14*r^2 / 4 = 38.465. we solve for r, the radius, and get two solutions. 7 and -7. Obviously the length of the radius can't be -7, so we know the radius is 7.
Now we must solve for the perimeter. The perimeter is equal to 2r + (2*3.14*r)/4
Plugging 7 in as the radius, r, we get 24.99 as our final answer.
A laptop producing company also produces laptop batteries, and claims that the batteries
it produces power a laptop for about 4:00 hours. But, you doubted the claim and collected
data from 500 laptop users of the same brand and battery, and you found out the battery
powers the laptop for about 3:00 hours and 30 minutes. Considering an alpha of 0.05,
prove the claim of the company is true or false or show whether you accept the
company’s claim or reject it? Please also write H0 and Ha statements for testing your
hypothesis
Answer:
There is enough evidence to support the claim that the batteries power the laptops for significantly less than 4 hours. (P-value = 0).
The null and alternative hypothesis are:
[tex]H_0: \mu=4\\\\H_a:\mu< 4[/tex]
Step-by-step explanation:
The question is incomplete: To test this claim a sample or population standard deviation is needed.
We will estimate that the sample standard deviation is 2 hours, and use a t-test to test that claim.
NOTE (after solving): The difference between the sample mean and the mean of the null hypothesis is big enough to reject the null hypothesis, even when we have a sample standard deviation of 3.5 hours, which can be considered bigger than the maximum standard deviation for the sample.
This is a hypothesis test for the population mean.
The claim is that the batteries power the laptops for significantly less than 4 hours.
Then, the null and alternative hypothesis are:
[tex]H_0: \mu=4\\\\H_a:\mu< 4[/tex]
The significance level is 0.05.
The sample has a size n=500.
The sample mean is M=3.5.
As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=2.
The estimated standard error of the mean is computed using the formula:
[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{2}{\sqrt{500}}=0.0894[/tex]
Then, we can calculate the t-statistic as:
[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{3.5-4}{0.0894}=\dfrac{-0.5}{0.0894}=-5.5902[/tex]
The degrees of freedom for this sample size are:
[tex]df=n-1=500-1=499[/tex]
This test is a left-tailed test, with 499 degrees of freedom and t=-5.5902, so the P-value for this test is calculated as (using a t-table):
[tex]P-value=P(t<-5.5902)=0[/tex]
As the P-value (0) is smaller than the significance level (0.05), the effect is significant.
The null hypothesis is rejected.
There is enough evidence to support the claim that the batteries power the laptops for significantly less than 4 hours.
round 0.004198223 to 3 significant figures
I will give brainliest
Answer:
0.00420 is the answer
Step-by-step explanation:
The definition of sig figs is each of the digits of a number that are used to express it to the required degree of accuracy, starting from the first nonzero digit.
The rounding number of 0.004198223 to 3 significant figures is 0.0042
Here,
The number is 0.004198223.
We have to find, 0.004198223 to 3 significant figures.
What is Rounding number?
Rounding means making a number simpler but keeping its value close to what it was.
Here,
The number is 0.004198223.
To find 3 significant figures,
We round a number to three significant figures in the same way that we would round to three decimal places.
Then, We count from the first non-zero digit for three digits. We then round the last digit.
Here, the digit is 9 then it will be round.
We get, the number is;
0.0042
We fill in any remaining places to the right of the decimal point with zeros.
So, The rounding number of 0.004198223 to 3 significant figures is 0.00420
Learn more about the rounding number visit:
https://brainly.com/question/4896544
#SPJ2
Account A and Account B both have a principal of $2,000 and an annual interest rate of 5%. No additional deposits or withdrawals are made. Account A earns simple interest. Account B earns interest compounded annually. Compare the amounts in the two accounts after 20 years. Which earns more interest? How much more?
Answer:
Which earns more interest = Account B
How much more = $1,306.60
Step-by-step explanation:
Given;
Principal P = $2,000
Interest rate r = 5% = 0.05
Time t = 20 years
For account A;
Simple interest = P×r×t
Substituting the values;
Simple interest = 2,000 × 0.05 × 20 = $2000
Interest on account A = $2,000
For account B;
Compound interest
Final amount = P(1 + r)^t
Since it's compounded annually
Substituting the values;
Final amount = 2000(1+0.05)^20
Final amount = $5306.60
Interest = final amount - principal = $5306.60 -$2000
Interest = $3,306.60
Therefore, account B earns more interest.
Difference = account B interest - account A interest
Difference = $3,306.60 - $2,000
Difference = $1,306.60
if jm = 5x - 8 and lm = 2x - 6, which expression represents jl
Answer:
7x -14 = jl
Step-by-step explanation:
Assuming a straight line
jm+ ml = jl
5x-8 + 2x-6 = jl
Combine like terms
7x -14 = jl
A survey was sent out to compare the proportion of adults who use their car horns when driving for two age populations (1=younger adults, defined as between 20 and 39 years old and 2 =older adults, defined as over 60 years old). The following data was obtained from those who responded.
Calculate the 90% confidence interval using the standard normal distribution. Note that 1 =0.52. P2= 0.35, and s.e.(P1-P2) =0.0338. Round to the fourth decimal point. Please enter you answer in the following format: (lower value, upper value)
Use the horn Use the horn
Group Yes No Total
1= younger adults 261 240 501
2= older adults 123 229 352
Answer:
The 90% confidence interval for the difference between proportions is (0.115, 0.228).
As the value 0 is not included in the interval, we can conclude that there is significant difference in the proportion of youger adults that use the horn and older adults that use the horn.
Step-by-step explanation:
We want to calculate the bounds of a 90% confidence interval.
For a 90% CI, the critical value for z is z=1.645.
The sample 1 (younger adults) , of size n1=501 has a proportion of p1=0.521.
[tex]p_1=X_1/n_1=261/501=0.5210[/tex]
The sample 2 (older adults), of size n2=352 has a proportion of p2=0.3494.
[tex]p_2=X_2/n_2=123/352=0.3494[/tex]
The difference between proportions is (p1-p2)=0.1715.
[tex]p_d=p_1-p_2=0.5210-0.3494=0.1715[/tex]
The pooled proportion, needed to calculate the standard error, is:
[tex]p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{261+123}{501+352}=\dfrac{384}{853}=0.4502[/tex]
The estimated standard error of the difference between means is computed using the formula:
[tex]s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.4502*0.5498}{501}+\dfrac{0.4502*0.5498}{352}}\\\\\\s_{p1-p2}=\sqrt{0.0005+0.0007}=\sqrt{0.0012}=0.0346[/tex]
Then, the margin of error is:
[tex]MOE=z \cdot s_{p1-p2}=1.645\cdot 0.0346=0.0569[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=(p_1-p_2)-z\cdot s_{p1-p2} = 0.1715-0.0569=0.115\\\\UL=(p_1-p_2)+z\cdot s_{p1-p2}= 0.1715+0.0569=0.228[/tex]
The 90% confidence interval for the difference between proportions is (0.115, 0.228).
Which is the same as asking:
To what power must 5 be raised to get 3,125?
Answer: 5^5
Step-by-step explanation:
Since 5x5x5x5x5 = 3,125
Trapezoid ABCD is graphed in a coordinate plane,
What is the area of the trapezoid?
4
3
B
С
16 square units
O 24 square units
32 square units
48 square units
-5 4 3 2 -11
1 2 3 4 5 x
-5
Answer:
24 square units
Step-by-step explanation:
The formula for computing the area of a trapezoid is shown below:
As we know that
Area of a trapezium is
[tex]= \frac{1}{2} \times h(a+b)[/tex]
where
h = perpendicular height
The a and b = length of the parallel sides.
Now,
h = 2 - -2 = 4 units
a = 5 - -3 = 8 units
b = 3 - -1 = 4 units
Now placing these values to the above formula
So, the area of a trapezoid is
[tex]= \dfrac{1}{2} \times 4(8+4)[/tex]
[tex]= 2 \times 12[/tex]
= 24 square units.
Hence we applied the above formula so that the area of trapezoid could come
A start-up news company is looking to expand their audience and is interested in studying the how many adults regularly use social media as a source of news. According to the Pew Research Center, 62% of adults get their news from social media, but researchers want to determine of this proportion is actually greater than 62% in region they plan on advertising on.
They take a random sample of 200 adults in the region they are interested in advertising in and what they use to typically get their news. A total of 137 adults reported regularly getting their news from social media.
The point estimate for this problem is: (report your answer to 3 decimal places)
Checking Conditions: We are told that the sample was randomly selected. Are the other conditions met to perform a hypothesis test for p?
A) Yes, the sample size is greater than 30.
B) Yes, there are at least 10 adults saying they get their news from social media and at least 10 that do not.
C) Yes, the population standard deviation is known.
D) No, the population mean is unknown.
Answer:
Step-by-step explanation:
The point estimate is the sample proportion.
Considering the sample,
Sample proportion, p = x/n
Where
x = number of success = 137
n = number of samples = 200
p = 137/200 = 0.685
From the information given,
Population proportion = 62% = 62/100 = 0.62
The correct options are
A) Yes, the sample size is greater than 30.
B) Yes, there are at least 10 adults saying they get their news from social media and at least 10 that do not.
I promise brainieliest for the first to answer What is the solution to the inequality 2x ≥ -4? Click the number line until the correct answer is shown.
Answer:
x ≥ -2
Step-by-step explanation:
Divide both sides of the inequality by 2.
2x ≥ - 4
2x / 2 ≥ -4 / 2
x ≥ -2
Answer:
the answer is the arrow going to the right because its not a negative number and a closed circle
Step-by-step explanation:
so that means that 2x is at LEASt more than -4 opposed to this sign> wich just means greater than
because when you work with variables you usually cannot find the exact amount especially when you are rounding so you know that its biigger than no less than or at least -4
how do you add 9 1/6 + 2 1/12
Answer:
11 1/4
Step-by-step explanation:
first make the fractions equal. So 9 1/6 would be 9 2/12 so that we canadd them together.
9 2/12 + 2 1/12 = 11 3/12
but u can simplify the answer so itll be 11 1/4
[tex]answer = 11 \ \frac{3}{12} \\ solution \\ 9 \ \frac{1}{6} + 2 \ \frac{1}{12} \\ = \frac{55}{6} + \frac{25}{12} \\ = \frac{55 \times 2 + 25}{12} \\ = \frac{110 + 25}{12} \\ = \frac{135}{12} \\ = 11 \ \ \frac{3}{12} \\ hope \: it \: helps[/tex]
simplify (51/3)^3
i will give brainlist
Answer: D. 5
Step-by-step explanation:
Typically when you have exponents in a form like this, you would multiply 1/3 with 3 to get 1/3 * 3/1. The threes cancel out and you're left with an exponent of 1. And 5 to the 1 power is 5.
What is the approximate value of sin B?
B
>
17.46
7
A
16
Answer:
Option (B)
Step-by-step explanation:
From the figure attached,
AB = 7 units
BC = 17.46 units
AC = 16 units
Now we apply the sine rule in the given triangle ABC,
SinB = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
= [tex]\frac{AC}{BC}[/tex]
= [tex]\frac{16}{17.46}[/tex]
= 0.916
≈ 0.92
Therefore, Option (B) will be the answer.
Answer:
DIFFERENT PICS
Step-by-step explanation:
I had one and the awnser was 0.40, and C had a arch whereas B did not.
The table represents a function. A 2-column table with 5 rows. The first column is labeled x with entries negative 6, 7, 4, 3, negative 5. The second column is labeled f of x with entries 8, 3, negative 5, negative 2, 12. Which value is an output of the function? –6 –2 4 7The table represents a function. A 2-column table with 5 rows. The first column is labeled x with entries negative 6, 7, 4, 3, negative 5. The second column is labeled f of x with entries 8, 3, negative 5, negative 2, 12. Which value is an output of the function? –6 –2 4 7
Answer:
-2 is an output of the function.
Step-by-step explanation:
The given table is as follows:
[tex]\left[\begin{array}{cc}{x}&f(x)\\-6&8\\7&3\\4&-5\\3&-2\\-5&12\end{array}\right][/tex]
Here, the values written on the left side of table i.e. values of [tex]x[/tex] are known as the domain values or input values to a function.
The values written on the right side of table i.e. values of [tex]f(x)[/tex] are known as the range values or output values of the function [tex]f(x)[/tex].
Let us consider the pairs of values:
(-6,8) then left side value is of [tex]x[/tex] and right side value is of [tex]f(x)[/tex]
i.e. when [tex]x=-6[/tex], the output value [tex]f(x) =8[/tex].
The same thing applies for all the pairs of values.
similarly for the pair (3,-2):
Left side value is of [tex]x[/tex] and right side value is of [tex]f(x)[/tex]
i.e. when [tex]x=3[/tex], the output value [tex]f(x) =-2[/tex].
So, the answer is:
-2 is an output of the function.
Answer:
-2
Step-by-step explanation:
A company estimates that 0.8% of their products will fail after the original warranty period but within 2 years of the purchase, with a replacement cost of $400. If they offer a 2 year extended warranty for $27, what is the company's expected value of each warranty sold?
Answer:
The expected value of each warranty sold is $23.8.
Step-by-step explanation:
0.8% probability of the product failling.
If the product fails, the company will lose 400 - 27 = $373. So a net value of -373.
100 - 0.8 = 99.2% probability of the product not failling.
If the product does not fail, the company gains $27.
What is the company's expected value of each warranty sold?
We multiply each outcome by its probability.
0.008*(-373) + 0.992*27 = 23.8
The expected value of each warranty sold is $23.8.
The total mass of the Sun is about 2×10^30 kg, of which about 76 % was hydrogen when the Sun formed. However, only about 12 % of this hydrogen ever becomes available for fusion in the core. The rest remains in layers of the Sun where the temperature is too low for fusion.
Part A
Use the given data to calculate the total mass of hydrogen available for fusion over the lifetime of the Sun.
Express your answer using two significant figures.
Part B
The Sun fuses about 600 billion kilograms of hydrogen each second. Based on your result from part A, calculate how long the Sun’s initial supply of hydrogen can last. Give your answer in both seconds and years.
Express your answer using two significant figures.
Part D
Given that our solar system is now about 4.6 billion years old, when will we need to worry about the Sun running out of hydrogen for fusion?
Express your answer using two significant figures.
Answer:
A. 1.8 ×[tex]10^{30}[/tex] Kg
B i. 3.0 × [tex]10^{17}[/tex] seconds
ii. 9.6 × [tex]10^{9}[/tex] years
C. After 9.2 × [tex]10^{9}[/tex] (9.2 billion) years
Step-by-step explanation:
Given that the mass of the Sun = 2× [tex]10^{30}[/tex] Kg.
Mass of hydrogen when Sun was formed = 76% of 2× [tex]10^{30}[/tex] Kg
= [tex]\frac{76}{100}[/tex] ×2× [tex]10^{30}[/tex] Kg
= 1.52 × [tex]10^{30}[/tex] Kg
Mass of hydrogen available for fusion = 12% of 1.52 × [tex]10^{30}[/tex] Kg
= [tex]\frac{12}{100}[/tex] × 1.52 × [tex]10^{30}[/tex] Kg
= 1.824 ×[tex]10^{30}[/tex] Kg
A. Total mass of hydrogen available for fusion over the lifetime of the sun is 1.8 ×[tex]10^{30}[/tex] Kg.
B. Given that the Sun fuses 6 × [tex]10^{11}[/tex] Kg of hydrogen each second.
i. The Sun's initial hydrogen would last;
[tex]\frac{1.8*10^{30} }{6*10^{11} }[/tex]
= 3.04 × [tex]10^{17}[/tex] seconds
The Sun's hydrogen would last 3.0 × [tex]10^{17}[/tex] seconds
ii. Since there are 31536000 seconds in a year, then;
The Sun's initial hydrogen would last;
[tex]\frac{3.04*10^{17} }{31536000}[/tex]
= 9.640 × [tex]10^{9}[/tex] years
The Sun's hydrogen would last 9.6 × [tex]10^{9}[/tex] years.
C. Given that our solar system is now about 4.6 × [tex]10^{9}[/tex] years, then;
[tex]\frac{9.6*10^{9} }{4.6*10^{9} }[/tex]
= 2.09
So that; 2 × 4.6 × [tex]10^{9}[/tex] = 9.2 × [tex]10^{9}[/tex] years
Therefore, we need to worry about the Sun running out of hydrogen for fusion after 9.2 × [tex]10^{9}[/tex] years.
Part(A): The total mass of hydrogen available 9.6 billion years.
Part(B): The total time is 5.10 billion years.
Part(D): The hydrogen will last [tex]5.04\times 10^9 \ years[/tex]
Mass of the sun:Our sun is the largest object in our solar system. The mass of the sun is approximately [tex]1.988\times 1030[/tex] kilograms
Part(A):
Given that,
The total mass of the Sun =[tex]2\times10^{30} kg[/tex]
Mass of hydrogen in Sun = [tex]2\times10^{30} \times0.76\ kg[/tex]
The mass of hydrogen ever available for fusion is,
[tex]2\times10^{30} \times 0.76 \times 0.12 kg = 1.824\times 10^{29}[/tex]
Mass of hydrogen fuses each second = 600 billion kg/second.
Time hydrogen will last in seconds=[tex]1.824\times 10^{29}seconds.[/tex]
[tex]= 0.00304\times 10^{29 }= 3.04\times 10^{17}.[/tex]
Time hydrogen will last in seconds =[tex]1 year = 31,536,000 seconds.[/tex]
[tex]31,536,000 x = 3.04\times 10^{17} = 9.6 \ billion \ years.[/tex]
(B) Present age of sun = [tex]9.6-4.5 \ billion \ years[/tex]
The time when we need to worry about Sun running out of hydrogen for fusion = 5.10 billion years.
(D) The solar system is 4.6 billion years old that is [tex]4.6\times 10^9\ years[/tex]
And in part (B) we have calculated that hydrogen will last [tex]9.64\times 10^9[/tex] then,
[tex]9.64\times 10^9-4.6\times 10^9=5.04\times 10^9[/tex]
Learn more about the topic mass of the sun:
https://brainly.com/question/11359658
Find the diameter and radius of a circle with a circumference of 65.98 Please help
Answer:
21 and 10.5 respectively
Step-by-step explanation:
Remember circumference of a circle is given as;
C= 2×π×r; r is raduis
r = C / 2×π
=65.98/(2×3.142)= 10.50
D= 2× r = 2× 10.50= 21.0( D represent diameter)
Note π = 3.142 a known constant
Lily paints 3 trees for a wall mural. The middle tree is 2 1/2 ft tall. The tree on the left is 3/4 as tall as the middle tree. The tree on the right is 1 3/4 times as tall as the middle tree. How tall is each tree?
Answer:
middle is 2.5 ft
right is 4375 ft
left is 1875 ft
Step-by-step explanation:
Express loga 6 + loga 70 as a single logarithm
Answer:
logₐ(420)
Step-by-step explanation:
Answer:
The answer is
[tex] log_{a}(420) [/tex]
Step-by-step explanation:
You have to use Logarithm Law,
[tex] log_{a}(b) + log_{a}(c) ⇒ log_{a}(b \times c) [/tex]
* Take note, number b and c can only be multiplied when they have the same base, a
So for this question :
[tex] log_{a}(6) + log_{a}(70) [/tex]
[tex] = log_{a}(6 \times 70) [/tex]
[tex] = log_{a}(420) [/tex]