9. What is the pH of a 0. 25 molar HBz (benzoic acid) solution. Ka HBz=6. 5 x10-5​

Answers

Answer 1

The pH of a 0.25 molar HBz (benzoic acid) solution is approximately 2.61.

To calculate the pH of the solution, follow these steps:

1. Write the dissociation equation for benzoic acid: HBz ⇌ H⁺ + Bz⁻.
2. Set up an ICE table (Initial, Change, Equilibrium) to determine the equilibrium concentrations of the species involved.
3. Write the expression for Ka: Ka = [H⁺][Bz⁻]/[HBz].
4. Substitute the equilibrium concentrations into the Ka expression and solve for x, representing the [H⁺] concentration.
5. Calculate the pH using the formula: pH = -log[H⁺].

Initial concentrations are [HBz] = 0.25 M, [H⁺] = 0 M, and [Bz⁻] = 0 M. The change in concentration is -x for HBz, +x for H⁺, and +x for Bz⁻. Thus, at equilibrium, [HBz] = 0.25 - x, [H⁺] = x, and [Bz⁻] = x. The Ka expression becomes (6.5 × 10⁻⁵) = x²/(0.25 - x). After solving for x, we find x ≈ 0.00256 M. Finally, pH = -log(0.00256) ≈ 2.61.

To know more about ICE table click on below link:

https://brainly.com/question/30395953#

#SPJ11


Related Questions

What mass in grams of sucrose must be dissolved in 2000 grams of water to make a 0. 1m solution?

Answers

We need to dissolve 6.85 grams of sucrose in 2000 grams of water to make a 0.1 M solution.

To calculate the mass of sucrose needed to make a 0.1 molar solution in 2000 grams of water, we need to use the formula:

[tex]m = n *M * MW[/tex]

Step 1: Calculate the number of moles of sucrose needed

Molarity (M) = 0.1 mol/L

volume of solution = 2000 grams of water ÷ density of water = 2000 mL

We need to calculate the number of moles of sucrose that would be present in 2000 mL of a 0.1 M solution:

moles of solute (n) = [tex]M * V = 0.1 mol/L *2.0 L = 0.2 moles[/tex]

Step 2: Calculate the mass of sucrose needed

Molecular weight of sucrose is 342.3 g/mol.

We can use the formula:

[tex]m = n * M * MW \\m = 0.2 moles *0.1 mol/L * 342.3 g/mol = 6.85 g[/tex]

To know more about Molecular weight, here

brainly.com/question/18948587

#SPJ4

A container of helium is at 40°C with a volume of 2. 55 L. What must the temperature be (in °C) raised to for the volume to be 4. 50 L?

Answers

A container of helium is at 40°C with a volume of 2. 55 L. The temperature must be 280.81°C raised to for the volume to be 4. 50 L.

Using the combined gas law, we can find the temperature change needed to achieve a volume of 4.50 L:

(P1V1/T1) = (P2V2/T2)

At the start, P1 = P2 since the pressure is constant. So we can simplify the equation:

(V1/T1) = (V2/T2)

Plugging in the given values, we get:

(2.55 L)/(313.15 K) = (4.50 L)/T2

Solving for T2, we get:

T2 = (4.50 L x 313.15 K) / 2.55 L

T2 = 553.81 K

Converting to Celsius, we get:

T2 = 280.81°C

Therefore, the temperature must be raised to 280.81°C for the volume to be 4.50 L.

To know more about the helium refer here :

https://brainly.com/question/4945478#

#SPJ11

PLEASE HELP!!!!
If the sun heats my car from a temperature of 293K to a temperature of 338K, what will the pressure inside my car be? Assume the pressure was initially 1 atm.

Answers

The pressure inside the car will be approximately 1.16 atm after the temperature increase.

In the solution to this question, we can assume that the temperature increase is isobaric (constant pressure), so we can use the ideal gas law to calculate the final pressure of the car:

PV=nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

We know that the amount of gas in the car will remain constant, so we can write:

[tex]P_1V = nRT_1[/tex]

and

[tex]P_2V = nRT_2[/tex]

where [tex]P_1[/tex] and [tex]T_1[/tex] are the initial pressure and the temperature, whereas [tex]P_2[/tex] and [tex]T_2[/tex] are the final pressure and temperature of the car.

We are given that [tex]P_1[/tex]=1 atm, [tex]T_1[/tex]=293 K, and [tex]T_2[/tex] = 338 K. We need to find the pressure [tex]P_2[/tex]:

We can say that [tex]P_2 = (P_1 T_2/ T_1)[/tex];

= (1 atm)(338 K/293 K)

= 1.16 atm

So, the pressure inside the car will be approximately 1.16 atm after the temperature increase.

Learn more about Ideal Gas law at:

https://brainly.com/question/25290815

#SPJ1

832 J of energy is used to raise the temperature of an unknown metal from 65oC to 71oC. If the specific heat of the metal is 0. 466 J/g*C, what is the mass of the metal sample? g (five sig figs)

Answers

The formula for calculating the amount of energy required to raise the temperature of a substance is:

q = m * c * ΔT

where q is the amount of energy, m is the mass of the substance, c is the specific heat, and ΔT is the change in temperature.

We can rearrange this formula to solve for the mass of the metal:

m = q / (c * ΔT)

Substituting the given values, we get:

m = 832 J / (0.466 J/g*C * (71oC - 65oC))

m = 832 J / (0.466 J/g*C * 6oC)

m = 832 J / 2.796 J/g

m = 297.1387678 g

Rounding to five significant figures, the mass of the metal sample is 297.14 g.

To know more about substance refer here

https://brainly.com/question/13320535#

#SPJ11

An unknown gas with a mass of 205 g occupies a volume of 20. 0 L at 273 K and 1. 00 atm. What is the molar mass of this compound?

Answers

The molar mass of the unknown gas is approximately 221.6 g/mol.

To find the molar mass of the unknown gas, we can use the ideal gas law equation:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, we need to convert the given values to their appropriate units:

mass (m) = 205 g

volume (V) = 20.0 L

pressure (P) = 1.00 atm

temperature (T) = 273 K

Next, we can rearrange the ideal gas law equation to solve for the number of moles:

n = PV / RT

Substituting the given values, we get:

n = (1.00 atm) x (20.0 L) / [(0.08206 L atm/mol K) x (273 K)]

n = 0.926 mol

Now we can calculate the molar mass of the unknown gas by dividing its mass by the number of moles:

molar mass = mass / n

molar mass = 205 g / 0.926 mol

molar mass = 221.6 g/mol

To know more about molar mass refer to-

https://brainly.com/question/22997914

#SPJ11

Chemical equilibrium is a dynamic process. What does this mean?

1. Nothing is changing.

2. There are multiple reactants and products involved in the chemical reaction.

3. It appears as though nothing is happening, but there is constant change occurring.

4.The reaction has reached completion and stopped reacting.

Answers

Answer: 3. It appears as though nothing is happening, but there is constant change occurring.

Explanation:

equilibrium is the state when the changes cancel each other, and the net change is 0.

think of it like a stalemate in tug of war; both people are pulling, but you wont see anything change, because their forces are equal and in opposite direction :)

When ammonium is added to water the temperature of the water decreases. Ammonium nitrates can be recovered by evaporating the water added Which explains those observations A the ammonium nitrates dissolved in water and process is endothermic B the ammonium nitrate reacts with the water and process is endothermic C the ammonium nitrates dissolved in water and process is exothermic D the ammonium nitrate reacts with the water and process is exothermic

Answers

Ammonium nitrates can be recovered by evaporating the water added explains that ammonium nitrates dissolved in water and process is endothermic. Thus, option A is correct.

When ammonium is added to water, the temperature of the water decreases. This is because the dissolution of ammonium in water is an endothermic process, meaning it requires energy in the form of heat to take place. When ammonium dissolves in water, it absorbs heat from the surroundings, which causes the temperature of the water to decrease.

Furthermore, ammonium nitrates can be recovered by evaporating the water that was added. This indicates that the ammonium nitrates dissolved in water and the process is endothermic. If the ammonium nitrate had reacted with the water, it would not be possible to recover it by evaporation.

Therefore, option A, "the ammonium nitrates dissolved in water and process is endothermic," is the correct explanation for the observations that when ammonium is added to water, the temperature decreases, and ammonium nitrates can be recovered by evaporating the water added.

To know more about Ammonium nitrates, visit:

https://brainly.com/question/5148461#

#SPJ11

15. The ionization potential ……………….. across the period from left to right whereas it as one moves from top to bottom.
(a) increases, decreases
(b) decreases, increases
(c) remains same
(d) None of these

Answers

A.
Increases across a period and decreases down a group

If 3grams of sodium reacts with 25 grams of sulfuric acid to form sodium sulfate and 1 gram of hydrogen and no sodium is left after the reaction but 9grams of acid remained unreacted how many grams of sodium sulfate were formed

Answers

The balanced chemical equation for the reaction between sodium and sulfuric acid to form sodium sulfate and hydrogen gas is:

2Na + H2SO4 -> Na2SO4 + 2H2

From the given information, we can see that the reaction is limited by the amount of sodium available, since all of the sodium is used up in the reaction.

Therefore, we can use the amount of sodium to determine the amount of sulfuric acid that reacted and the amount of sodium sulfate that was formed.

1. Calculate the amount of sulfuric acid that reacted:

m(Sulfuric acid) = 25 g - 9 g = 16 g

n(Sulfuric acid) = m(Sulfuric acid) / M(Sulfuric acid) = 16 g / 98.08 g/mol = 0.163 mol

2. Calculate the amount of sodium sulfate formed:

Since the mole ratio of Na to Na2SO4 is 2:1, the number of moles of sodium used is:

n(Na) = m(Na) / M(Na) = 3 g / 22.99 g/mol = 0.1305 mol

The amount of sodium sulfate formed is also 0.1305 mol, since the mole ratio of Na to Na2SO4 is 2:1.

m(Na2SO4) = n(Na2SO4) x M(Na2SO4) = 0.1305 mol x 142.04 g/mol = 18.54 g

Therefore, 18.54 grams of sodium sulfate were formed in the reaction.

To know more about hydrogen  refer here

https://brainly.com/question/31018544#

#SPJ11

Solve the following problems using the chemical formulas as a conversion factor.


1. How many grams of Lead (Pb) contain 1. 25x104 grams of PbCO3?


2. Determine the number of moles of Hydrogen (H) in 0. 0737 mol of N2H4


3. How many grams of Iron (Fe) contain 6. 45x10-3 grams of Fe3O4?


4. Determine the number of moles of Sodium (Na) in 4. 2 mol of NaClO3

Answers

There are 0.1474 moles of hydrogen atoms in 0.0737 mol of N2H4.

What is Mole?

In chemistry, a mole is a unit used to express the amount of a substance. One mole of a substance is defined as the amount of that substance that contains as many elementary entities (atoms, molecules, or other particles) as there are atoms in 12 grams of carbon-12.

To determine the mass of lead in PbCO3, we need to use the molar mass of PbCO3 and the stoichiometric relationship between Pb and PbCO3. The molar mass of PbCO3 is 267.21 g/mol, and the stoichiometric relationship between Pb and PbCO3 is 1:1.

Thus, the mass of Pb in 1.25x10^4 g of PbCO3 can be calculated as follows:

Mass of Pb = (1.25x10^4 g PbCO3) x (1 mol PbCO3/267.21 g PbCO3) x (1 mol Pb/1 mol PbCO3) x (207.2 g Pb/mol Pb)

= 1.02x10^4 g Pb

Therefore, 1.02x10^4 g of Pb is contained in 1.25x10^4 g of PbCO3.

The formula for N2H4 indicates that there are two hydrogen atoms for every molecule of N2H4. Therefore, we can calculate the number of moles of hydrogen atoms in 0.0737 mol of N2H4 as follows:

Number of moles of H atoms = (0.0737 mol N2H4) x (2 mol H atoms/1 mol N2H4)

= 0.1474 mol H

Learn more about Mole, visit;

https://brainly.com/question/15356425

#SPJ4

1. How many liters of water will be produced if you have 17. 43 grams of ammonia (NH3)? *


(8 Points)


4 NH3 + 502 --> 4 NO + 6H2O


Enter your math answer

Answers

17.43 grams of NH₃ will produce 34.39 liters of water.

The balanced chemical equation is 4 NH₃ + 5O₂ → 4NO + 6H₂O. From the equation, we can see that for every 4 moles of NH₃ reacted, 6 moles of water are produced.

Therefore, to determine the number of moles of water produced, we need to convert the mass of NH₃ given to moles. The molar mass of NH₃ is 17.03 g/mol, so:

17.43 g NH₃ × (1 mol NH₃/17.03 g NH₃) = 1.023 mol NH₃

Using stoichiometry, we can calculate the number of moles of water produced:

1.023 mol NH₃ × (6 mol H₂O/4 mol NH₃) = 1.5345 mol H₂O

Finally, we can convert the number of moles of water to liters using the fact that 1 mole of any gas at standard temperature and pressure (STP) occupies 22.4 L:

1.5345 mol H₂O × (22.4 L/mol) = 34.39 L


To know more about chemical equation, refer here:

https://brainly.com/question/19626681#

#SPJ11

Consider these two entries from a fictional table of standard reduction potentials.


X3+ + 3e—>


X(s)


E° = -2. 43 V


Y3+ + 3e—>


Y(S)


E° = -0. 44 V


What is the standard potential of a galvanic (voltaic) cell where X is the anode and Y is the cathode?


Edell


=


V

Answers

The standard potential of the galvanic cell where X is the anode and Y is the cathode is 1.99 V.

The standard potential of a galvanic cell can be calculated by subtracting the reduction potential of the anode (X) from the reduction potential of the cathode (Y).

E°cell = E°cathode - E°anode

In this case, Y has a higher reduction potential than X, so Y will be the cathode and X will be the anode.

E°cell = E°Y - E°X

E°cell = (-0.44 V) - (-2.43 V)

E°cell = 1.99 V

To know more about the standard potential of the galvanic cell, click below.

https://brainly.com/question/28167837

#SPJ11

If 450 ml of water are added to 550 ml of a 0.75 m k2so4 solution, what will the molarity of the diluted solution be?

Answers

To determine the molarity of the diluted solution, we need to use the equation:

M1V1 = M2V2

where M1 is the initial molarity of the solution, V1 is the initial volume of the solution, M2 is the final molarity of the solution, and V2 is the final volume of the solution.

In this case, the initial solution is a 0.75 M K2SO4 solution with a volume of 550 mL, and water is added to make a final volume of 450 mL. We can write:

M1 = 0.75 M

V1 = 550 mL

V2 = 450 mL

We can solve for M2:

M1V1 = M2V2

0.75 M × 550 mL = M2 × 450 mL

M2 = (0.75 M × 550 mL) / 450 mL

M2 = 0.92 M

Therefore, the molarity of the diluted solution is 0.92 M.

To know more about molarity refer here

https://brainly.com/question/31545539#

#SPJ11

Determine the mass of ammonium chloride, NH4Cl, required to prepare 0. 250 L of a 0. 35 M solution of ammonium chloride.

Answers

We need 4.68 g of ammonium chloride (NH₄Cl) to prepare 0.250 L of a 0.35 M solution.

To determine the mass of ammonium chloride (NH₄Cl) required to prepare a 0.250 L (liters) of a 0.35 M (molar) solution, follow these steps:
1. Recall the formula for molarity: M = moles of solute / volume of solution in liters.
2. Rearrange the formula to solve for moles of solute: moles of solute = M x volume of solution in liters.
3. Calculate the moles of NH₄Cl needed: moles of NH₄Cl = 0.35 M x 0.250 L = 0.0875 moles.
4. Determine the molar mass of NH₄Cl by adding the molar masses of its constituent elements: (N = 14.01 g/mol, H = 1.01 g/mol, Cl = 35.45 g/mol): 14.01 + (4 x 1.01) + 35.45 = 53.49 g/mol.
5. Calculate the mass of NH₄Cl required: mass = moles x molar mass = 0.0875 moles x 53.49 g/mol = 4.680125 g.

So, you need 4.68 g of ammonium chloride (NH₄Cl) to prepare 0.250 L of a 0.35 M solution.

To know more about molarity :

https://brainly.com/question/13601876

#SPJ11

What volume (mL) of concentrated H3PO4 (14. 7 M) should be used to prepare 125 mL of a 3. 00 M H3PO4 solution?

Answers

You should use about 25.51 mL of concentrated H3PO4 to prepare 125 mL of a 3.00 M H3PO4 solution.

To prepare 125 mL of a 3.00 M H3PO4 solution using concentrated H3PO4 (14.7 M), you can use the dilution formula:

M1 × V1 = M2 × V2

Where M1 is the initial molarity (14.7 M), V1 is the volume of the concentrated solution needed, M2 is the final molarity (3.00 M), and V2 is the final volume (125 mL).

Rearrange the formula to solve for V1:

V1 = (M2 × V2) / M1

V1 = (3.00 M × 125 mL) / 14.7 M

V1 ≈ 25.51 mL

Therefore, you should use approximately 25.51 mL of concentrated H3PO4 to prepare 125 mL of a 3.00 M H3PO4 solution.

To learn more about molarity, refer below:

https://brainly.com/question/8732513

#SPJ11

B) Express the answer to this multistep calculation using the appropriate number of significant figures: 87. 95 feet x 0. 277 feet +5. 02 feet - 1. 348 feet + 10. 0 feet.

Answers

The answer to the multistep calculation, expressed using the appropriate number of significant figures, is 24.3 feet.

In order to determine the appropriate number of significant figures in the answer, we need to follow the rules of significant figures for addition and subtraction.

When adding or subtracting numbers, the answer should be rounded to the same number of decimal places as the measurement with the least number of decimal places.

Here, the measurement with the least number of decimal places is 10.0 feet, which has one decimal place. Therefore, we should round the final answer to one decimal place as well.

Now, let's perform the calculation:

87.95 feet x 0.277 feet + 5.02 feet - 1.348 feet + 10.0 feet = 24.3108725 feet

Rounding to one decimal place, the final answer is:

24.3 feet

Therefore, the answer to the multistep calculation, expressed using the appropriate number of significant figures, is 24.3 feet.

To know more about significant figures  refer here:

https://brainly.com/question/29153641

#SPJ11

During this reaction, water is evaporating from the solution at the same time some of the co2 is dissolving into the water. How might these factors affect the results of the experiment? explain each effect and the overall effect.

Answers

The evaporation of water and dissolution of CO2 can affect the results of the experiment in several ways:

Concentration changes: As water evaporates, the concentration of the solute in the remaining solution increases. This can affect the rate of reaction, as the concentration of the reactants is a key factor in determining the rate. Similarly, as CO2 dissolves in the water, the concentration of dissolved CO2 increases, which can affect the pH of the solution.

Mass changes: As water evaporates, the mass of the solution decreases. This can affect the accuracy of the results, as the mass is often used to calculate the amount of product formed.

Temperature changes: Evaporation is an endothermic process, meaning that it requires energy in the form of heat. As a result, the temperature of the solution may decrease during the reaction, which can affect the rate of the reaction.

Overall, the effects of water evaporation and CO2 dissolution will depend on the specific conditions of the experiment, including the starting concentrations of the reactants and the rate of evaporation. In general, these factors can affect the accuracy and precision of the results, and must be carefully controlled or accounted for in order to obtain reliable data.

To know more about evaporation refer to-

https://brainly.com/question/5019199

#SPJ11

The volume of a sample of gas is 2. 8 L when the pressure is 749. 5 mm Hg and the temperature is 31. 2 C. What is the new temperature in degrees Celsius if the volume increases to 4. 3 L and the pressure increases to 776. 2 mm Hg?




a 120 C


b 280 C


c 480 C


d 210 C

Answers

The volume of a sample of gas is 2.8 L when the pressure is 749.5 mm Hg and the temperature is 31. 2°C. (c) 480°C is the new temperature in degrees Celsius if the volume increases to 4. 3 L and the pressure increases to 776.2 mm Hg

Using the combined gas law:

(P1V1) / (T1) = (P2V2) / (T2)

Where:

P1 = 749.5 mm Hg

V1 = 2.8 L

T1 = 31.2 + 273.15 = 304.35 K (temperature converted to Kelvin)

P2 = 776.2 mm Hg

V2 = 4.3 L

T2 = ?

Solving for T2:

T2 = (P2V2T1) / (P1V1)

T2 = (776.2 mmHg * 4.3 L * 304.35 K) / (749.5 mmHg * 2.8 L)

T2 ≈ 758 K

Converting T2 back to Celsius:

T2 = 758 K - 273.15 = 484.85°C ≈ 480°C

Therefore, the new temperature is approximately 480°C.

To know more about the combined gas law refer here :

https://brainly.com/question/30458409#

#SPJ11

Research the history of DNA analysis in forensic science and create a timeline to show its evolution over the years

Answers

DNA analysis has revolutionized forensic science in the past few decades. It has become an indispensable tool for crime scene investigations, identifying suspects, and exonerating the innocent.

The history of DNA analysis dates back to 1984, when British geneticist Alec Jeffreys developed the technique of DNA fingerprinting. He used variable number tandem repeats (VNTRs) to create a unique DNA profile for each individual.

In 1986, DNA analysis was first used in a cri-minal case, where it was used to exonerate a man who had been wrongly convicted of ra-pe and mu-rder. Since then, DNA analysis has been used in several high-profile cases, such as the OJ Simpson trial in 1995 and the identification of 9/11 victims in 2001.

The technique of DNA fingerprinting evolved over the years, with the development of polymerase chain reaction (PCR) and short tandem repeats (STRs) in the 1990s. PCR enabled amplification of DNA samples, while STRs provided greater discrimination power in creating unique DNA profiles.

The first DNA database was established in the UK in 1995, followed by the US in 1998. Today, DNA databases are used worldwide for identifying suspects and matching DNA samples to cri-me scenes.

The latest advancements in DNA analysis include next-generation sequencing (NGS), which can analyze entire genomes, and mitochondrial DNA analysis, which can identify maternal lineage.

In conclusion, DNA analysis has come a long way since its inception in the 1980s. It has become an essential tool for forensic investigations and has contributed significantly to the justice system. The technique continues to evolve, and future advancements in DNA analysis will undoubtedly improve its effectiveness and accuracy.

To know more about DNA analysis, visit:

https://brainly.com/question/19340987#

#SPJ11

A 4 L sample of gas at 30 degrees celcius and 1 atm is changed to 0 degrees celcius and 800torr. What is its new volume?

Answers

A 4 L sample of gas at 30 degrees celcius and 1 atm is changed to 0 degrees celcius and 800torr. 4.51 L is its new volume.

To solve this problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas.

[tex]P1V1/T1 = P2V2/T2[/tex]

where P1, V1, and T1 are the initial conditions, and P2, V2, and T2 are the final conditions.

Substituting the given values, we get:

[tex]\left(\frac{{1 , \text{atm} \cdot 4 , \text{L}}}{{303 , \text{K}}}\right) = \left(\frac{{0.8 , \text{atm} \cdot V2}}{{273 , \text{K}}}\right)[/tex]

Solving for V2, we get:

[tex]V2 = \frac{{1 , \text{atm} \cdot 4 , \text{L} \cdot 273 , \text{K}}}{{303 , \text{K} \cdot 0.8 , \text{atm}}} = 4.51 , \text{L}[/tex]

Therefore, the new volume of the gas is 4.51 L when the temperature is changed from 30 degrees Celsius to 0 degrees Celsius and the pressure is changed from 1 atm to 800 torr.

To know more about the sample of gas refer here :

https://brainly.com/question/13137455#

#SPJ11

What is the molarity of a solution made by dissolving 2. 0 mol of solute in 6. 0 L of solvent?

Answers

The molarity of the solution is 0.33 M.

To calculate the molarity, you need to divide the moles of solute by the volume of the solvent in liters. In this case, you have 2.0 moles of solute and 6.0 liters of solvent. Using the formula M = moles/volume, you can find the molarity of the solution:

M = (2.0 moles) / (6.0 L)
M = 0.33 M

This means that the concentration of the solute in the solution is 0.33 moles per liter. Molarity is an important concept in chemistry as it helps in determining the concentration of a particular substance in a solution and is useful in various calculations and reactions.

To know more about moles  click on below link:

https://brainly.com/question/26416088#

#SPJ11

In air, nitric oxide gas reacts with oxygen to produce nitrogen dioxide,


which appears brown in color:


2 no(g) + o2(g) = 2no,(9)


what mass in grams of nitrogen dioxide would be produced by the


complete reaction of 0.551 grams of nitric oxide gas?

Answers

The complete reaction of 0.551 grams of nitric oxide gas would produce 0.846 grams of nitrogen dioxide.

The given chemical equation shows that 2 moles of nitric oxide (NO) gas reacts with 1 mole of oxygen (O2) gas to produce 2 moles of nitrogen dioxide (NO2). Therefore, the stoichiometric ratio of NO to NO2 is 2:2 or 1:1. This means that for every 1 mole of NO gas, 1 mole of NO2 gas is produced.

To determine the mass of NO2 produced from 0.551 grams of NO gas, we need to first convert the mass of NO into moles using its molar mass. The molar mass of NO is 30.01 g/mol (14.01 g/mol for N and 16.00 g/mol for O).

0.551 g of NO is equivalent to 0.551 g / 30.01 g/mol = 0.0184 moles of NO.

Since the stoichiometric ratio of NO to NO2 is 1:1, the number of moles of NO2 produced will also be 0.0184 moles.

The molar mass of NO2 is 46.01 g/mol (14.01 g/mol for N and 2 x 16.00 g/mol for 2 O atoms).

Therefore, the mass of NO2 produced will be:

0.0184 moles x 46.01 g/mol = 0.846 grams.

Hence, the complete reaction of 0.551 grams of nitric oxide gas would produce 0.846 grams of nitrogen dioxide.

To know more about nitric oxide, visit:

https://brainly.com/question/31737620#

#SPJ11

If an area has a very cold climate, it is most likely that the area

Answers

If an area has a very cold climate, it is most likely that the area experiences low temperatures throughout the year.

Cold climate regions are often characterized by sub-zero temperatures and limited precipitation, which can lead to dry and barren landscapes. These regions are typically found in the polar regions of the world, such as the Arctic and Antarctic, as well as in high-altitude mountain ranges.

The cold climate can have a significant impact on the environment, with many plants and animals adapted to survive in the harsh conditions. In cold climates, plants and animals often have adaptations that help them conserve heat and energy, such as thick fur coats, hibernation, or slow growth rates.

This means that the biodiversity in cold climate regions may be different than that found in more temperate regions.

Human communities that live in cold climate regions have also adapted to the extreme conditions, often relying on traditional techniques to survive. For example, the Inuit people of the Arctic have developed an intricate knowledge of the land and sea to hunt, fish, and gather food. They have also developed specialized tools and clothing to withstand the cold temperatures.

Overall, a cold climate can have a significant impact on the environment and the communities that rely on it. Understanding the unique challenges and adaptations of these regions is crucial for effective conservation and management.

To know more about cold climate, visit:

https://brainly.com/question/11673115#

#SPJ11

using wedge-dash notation to designate stereochemistry, draw (r)-3-aminobutan-1-ol.

Answers

To draw (R)-3-aminobutan-1-ol using wedge-dash notation, follow these steps: 1. Draw a four-carbon chain representing butan-1-ol. 2. Add an -OH group to the first carbon. 3. Add an -NH2 group to the third carbon.

To draw (R)-3-aminobutan-1-ol using wedge-dash notation to designate stereochemistry, we first need to determine the absolute configuration of the molecule. The priority of the substituents attached to the chiral center (the carbon with four different groups attached) must be determined according to the Cahn-Ingold-Prelog (CIP) rules. The highest priority group is given a number 1, the second-highest priority group is given a number 2, and so on. For (R)-3-aminobutan-1-ol, the substituents attached to the chiral center are: - NH2 (amino group) - highest priority - OH (hydroxy group) - second-highest priority - CH3 (methyl group) - third-highest priority - H (hydrogen) - lowest priority To determine the absolute configuration, we need to look at the orientation of the substituents in three-dimensional space. If the lowest priority group is pointing away from us (into the page), we use the right-hand rule to determine the orientation of the remaining three groups. If the sequence of priorities goes clockwise, the configuration is (R); if it goes counterclockwise, the configuration is (S). In the case of (R)-3-aminobutan-1-ol, we can assign the following orientations: - NH2 (highest priority) - wedge - OH - dash - CH3 - wedge - H (lowest priority) - into the page Based on this, we can see that the sequence of priorities goes clockwise, indicating that the configuration is (R). Therefore, the wedge-dash notation for (R)-3-aminobutan-1-ol is: H NH2 | | C---C | | CH3 OH The NH2 and CH3 groups are represented by wedges, indicating that they are coming out of the page towards the viewer. The OH group is represented by a dash, indicating that it is going into the page away from the viewer. The H group is represented by a thin line, indicating that it is behind the plane of the paper.

Visit to know more about wedge dadhdash notation:-

https://brainly.com/question/30478936

#SPJ11

2. Dragonflies can travel at speeds up to 35 miles perhour. How many meters per second is that? (1 mile = 1609 meters)


3. The Hyperion is the tallest redwood tree in the worldat 379. 7 feet. How many centimeters is that? (1 inch = 2. 54 cm)


4. How many atoms are in 2. 35 moles sulfur?


5. How many molecules are in 3. 45 moles sucrose?


Pls Help ASAP!

Answers

2. To convert miles per hour to meters per second, we need to divide by 2.237.

Thus, 35 miles per hour is equal to (35/2.237) meters per second.

Simplifying, we get:

= 15.646 m/s

3. To convert feet to centimeters, we need to multiply by 30.48.

Thus, 379.7 feet is equal to (379.7 x 30.48) centimeters.

Simplifying, we get:

= 1158.754 centimeters

4. To calculate the number of atoms in 2.35 moles of sulfur, we need to use Avogadro's number, which is 6.022 x 10^23 atoms per mole.

Therefore, the number of atoms in 2.35 moles of sulfur is:

2.35 moles x 6.022 x 10^23 atoms/mole = 1.41 x 10^24 atoms

5. To calculate the number of molecules in 3.45 moles of sucrose, we need to use Avogadro's number, which is 6.022 x 10^23 molecules per mole.

Therefore, the number of molecules in 3.45 moles of sucrose is:

3.45 moles x 6.022 x 10^23 molecules/mole = 2.08 x 10^24 molecules

to know more about Avogadro's number refer here:

https://brainly.com/question/28812626#

#SPJ11

What volume of an hcl solution with a ph of 1. 3 can be neutralized by one dose of milk of magnesia?.

Answers

480 mL of the HCl solution with a pH of 1.3 can be neutralized by one dose of milk of magnesia assuming the concentration of magnesium hydroxide is 0.2 M.

To determine the volume of [tex]HCl[/tex] solution that can be neutralized by milk of magnesia, we need to know the concentration of the milk of magnesia.

Assuming milk of magnesia is a suspension of solid magnesium hydroxide in water, we need to know the concentration of magnesium hydroxide [tex](Mg(OH)2)[/tex] in the suspension.

Let's assume that the concentration of magnesium hydroxide in milk of magnesia is 0.2 M.

The balanced chemical equation for the neutralization reaction between [tex]HCl[/tex] and[tex]Mg(OH)2[/tex]is:

[tex]2HCl + Mg(OH)2 - > MgCl2 + 2H2O[/tex]

From the equation, we can see that two moles of [tex]HCl[/tex] react with one mole of [tex]Mg(OH)2[/tex].

To determine the volume of [tex]HCl[/tex] solution, we need to calculate the number of moles of [tex]Mg(OH)2[/tex] in one dose of milk of magnesia:

0.2 M = 0.2 moles / liter

Let's assume one dose of milk of magnesia is 30 mL, or 0.03 L. Then the number of moles of [tex]Mg(OH)2[/tex] in one dose is:

0.2 moles / L x 0.03 L = 0.006 moles Mg(OH)2

Therefore, this amount of [tex]Mg(OH)2[/tex] would require:

2 x 0.006 = 0.012 moles of [tex]HCl[/tex] for complete neutralization

Now, let's calculate the volume of [tex]HCl[/tex] solution needed to provide 0.012 moles of [tex]HCl[/tex].

The volume of [tex]HCl[/tex] solution can be calculated using the balanced chemical equation and the molarity of the [tex]HCl[/tex] solution:

2 moles HCl / 1 mole [tex]Mg(OH)2[/tex] x 0.012 moles [tex]Mg(OH)2[/tex] / 1 = 0.024 moles HCl

[tex]pH = -log[H+]1.3 = -log[H+]\\[H+] = 5 x 10^-2 M[/tex]

Now we can calculate the volume of the HCl solution using the equation:

moles = concentration x volume

0.024 moles = [tex]5 x 10^-2 M x volume[/tex]

volume = 0.48 L or 480 mL

To know more about  milk of magnesia refer to-

https://brainly.com/question/22066653

#SPJ11

Ifa container of nitrogen and oxygen gas holds 2. 50 atm of N2 gas and 1. 50 atm of O2 gas, what


is the total pressure inside the container?

Answers

The total pressure inside the container is 4.00 atm. This is because the total pressure of a gas mixture is equal to the sum of the individual pressures of each gas present. In this case, we have 2.50 atm of N2 gas and 1.50 atm of O2 gas.

When these two values are added together, we get the total pressure of 4.00 atm. This total pressure is also known as the partial pressure of the gas mixture.

The partial pressure of the gas mixture is the sum of the individual partial pressures of each gas present. Since the total pressure of a gas mixture is equal to the sum of the individual pressures of each gas present, the total pressure in the container is 4.00 atm.

Know more about Total pressure here

https://brainly.com/question/30255561#

#SPJ11

A) Why weight of water is converted to true volume. What are the three corrections that are considered?​

Answers

The weight of water is converted to true volume because the volume of water can be affected by temperature, pressure, and dissolved impurities. The three corrections that are considered are thermal expansion correction, atmospheric pressure correction, and dissolved impurities correction.

The thermal expansion correction takes into account the fact that water expands or contracts with temperature changes. As the temperature of water increases, its volume increases, and vice versa. The correction factor is calculated based on the temperature of the water and the coefficient of thermal expansion of water.

The barometric or atmospheric pressure correction is applied because the pressure of the surrounding air can affect the volume of water. The correction factor is calculated based on the atmospheric pressure and the vapor pressure of water at the given temperature.

The dissolved impurities correction is applied because dissolved substances, such as salts or gases, can also affect the volume of water. The correction factor is calculated based on the concentration of dissolved substances in the water.

To know more about thermal expansion, refer here:

https://brainly.com/question/14092908#

#SPJ11

A 20. 0 g lead ball is heated in a Bunsen burner to 705 degrees celsius. It is then dropped into a 500. 0 g water bath. What is the initial temperature of the water if the final temperature is 35 degrees celsius? The C of lead is 0. 13 J/g degrees C.


[ Remember: Ch2o = 4. 18 J/g degrees celsius]

Answers

The initial temperature of the water is 25.8 °C. As a result, the lead ball loses heat rapidly when it is placed in the water bath, causing the water temperature to increase significantly.

What is  Temperature?

Temperature is a measure of the average kinetic energy of the particles in a substance. It is a physical quantity that describes how hot or cold an object is. Temperature is usually measured using a thermometer and is commonly expressed in units such as degrees Celsius (°C), Fahrenheit (°F), or Kelvin (K).

The energy gained by the water can also be calculated using the formula:

Q = mcΔT

where Q is the energy gained (in joules), m is the mass of the water (in grams), c is the specific heat capacity of water (in J/g°C), and ΔT is the change in temperature of the water (in °C).

We can calculate Q as follows:

Q = (500.0 g)(4.184 J/g°C)(35°C - T)

where T is the initial temperature of the water.

Since the energy lost by the lead ball is equal to the energy gained by the water, we can set these two equations equal to each other and solve for T:

(20.0 g)(0.13 J/g°C)(705°C - T) = (500.0 g)(4.184 J/g°C)(35°C - T)

Simplifying and solving for T gives:

T = 25.8°C

Therefore, the initial temperature of the water is 25.8 °C.

To know more about Temperature, visit;

https://brainly.com/question/26866637

#SPJ4

What concentration of ethylene glycol is needed to raise the boiling point


of water to 105°C? (K⬇️b = 0. 51°C/m)

Answers

The concentration of ethylene glycol needed to raise the boiling point of water to 105°C is 9.8 mol/kg or 9.80 molal concentration.

To calculate the concentration of ethylene glycol needed to raise the boiling point of water to 105°C, we can use the following formula:

ΔTb = Kb x molality

Where ΔTb is the change in boiling point, Kb is the boiling point elevation constant for water (0.51°C/m), and molality is the number of moles of solute per kilogram of solvent.

First, we need to calculate the ΔTb, which is the difference between the boiling point of the solution (105°C) and the boiling point of pure water (100°C):

ΔTb = 105°C - 100°C = 5°C

Next, we can plug in the values and solve for the molality:

5°C = 0.51°C/m x molality

Therefore;

molality = 5°C / 0.51°C/m

             = 9.8 mol/kg

To know more about boiling point elevation, click below.

https://brainly.com/question/31074906

#SPJ11

Other Questions
Sectionalism was a major causing what conflict What do you think is the significance of the fact that judaism has such an extensive list of special days that should be observed A lake near the Arctic Circle is covered by a 2-meter-thick sheet of ice during the cold winter months. When spring arrives, the warm air gradually melts the ice, causing its thickness to decrease at a constant rate. After 3 weeks , the sheet is only 1. 25 meters thick. Let y represent the ice sheet's thickness (in meters) after weeks. Which of the following information about the graph of the relationship is given? 25. 0 kg dog is trapped on a rock in the middle of a narrow river. A 66. 0-kg rescuer has assembled a swing with negligible mass that she will use to swing down and catch the trapped dog at the bottom of her swing, and then continue swinging to the other side of the river. The ledge that the rescuer swings from is 5. 0 m above the rock, which is not high enough so the rescuer and dog together can reach the other side of the river, which is 3. 0 m above the rock. However, the rescuer can use a ladder to increase the height from which she swings. What is the minimum height of the ladder the rescuer must use so both dog and rescuer make it to the other side of the river? Assume that friction and air resistance are negligible You earn $130.00 for each subscription of magazines you sell plus a salary of $90.00 per week. How many subscriptions of magazines do you need to sell in order to make at least $1000.00 each week? Pronunciation and enunciation have all of the following in common except a. Both involve how you articulate b. Both are important to successful communication e both are tied to nonverbal communication d. Both can be impacted by rate Please select the best answer from the choices provided How much must be deposited today into the following account in order to have a $110,000 college fund in 17 years? Assume no additional deposits are made.An account with quarterly compounding and an APR of 4.9% Consider a hypothetical economy where there are no taxes and no international trade. Households spend $0. 90 of each additional dollar they earn and save the remaining $0. 10. If there are no taxes and no international trade, the oversimplified multiplier for this economy is. Suppose investment spending in this economy decreases by $200 billion. The decrease in investment will lead to a decrease in income, generating a 6.06 war on the bank use the given information to solve the triangleC=135 C = 45 B = 104)5) A = 26 a = 10 6=46) A = 60, a = 9 c = 107) A=150 C = 20 a = 2008) A = 24.3, C = 54.6 C = 2.689) A = 83 20, C = 54.6 c 18,1 what percent of stainless steel in the tank is used to make the two ends A random number generator picks a number from 12 to 41 in a uniform manner. Round answers to 4 decimal places when possible. a. The mean of this distribution is b. The standard deviation is c. The probability that the number will be exactly 36 is P(x = 36) = d. The probability that the number will be between 21 and 23 is P(21 < x < 23) = e. The probability that the number will be larger than 26 is P(x > 26) = f. P(x > 16 | x < 18) = g. Find the 49th percentile. h. Find the minimum for the lower quartile enter the number of days in you claim you can exclude for purposes of the substantial presence test 58 of a birthday cake was left over from a party. the next day, it is shared among 7 people. how big a piece of the original cake did each person get? (a) Country A has twice the GDP of country B. In the future, the annual growth rates of these two countries are expected to be 1% and 4%, respectively. After how many years will the GDP of country B exceed that of country A?(b) The sum of $4000 is borrowed from a bank at a rate of 4. 8% interest compounded monthly. The loan is repaid in monthly instalments of $x. Show that at the end of n months, the outstanding debt is given by 4000(1. 004) n - 250x (1. 004n - 1). (i) How many months would it take to repay the loan if x = 100? (ii) What should the monthly repayment be if the debt is to be cleared after 12 months? (iii) Describe briefly what happens to the outstanding debt when x = 16. 12 'one rupee' coins are distributed at random among 5 beggars A, B, C, D and E. Find the probability that: (i) They get 4, 2, 0, 5 and 1 coins respectively. (ii) Each beggar gets at least two coins. (iii) None of them goes empty handed 2. (A) My sister has a chocolate craze. (B) She eats chocolate every day. (C) Shemust have a piece of chocolate in her handbag wherever she goes. (D) If shedoes not eat chocolate, she will be in a very bad mood. (E) Chocolates areexpensive nowadays.TheThesupportingshowerstopicdetailthatsentencedoesnotbelongis:is: HELP ASAP PLEASE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Challenge: Six different names were put into a hat. A name is chosen 100 times and the name Fred is chosen 11 times. What is the experimental probability of the name Fred being chosen? What is the theoretical probability of the name Fred being chosen? Use pencil and paper. Explain how each probability would change if the number of names in the hat were different. The experimental probability of choosing the name Fred is nothing. =============The theoretical probability of choosing the name Fred is nothing why is 101 not in the sequence of 3n-2 What qualities in these stories do you think capture his imagination Calculate and compare the gravitational force and the electrical force between two protons that are separated by 4. 25x 10 -15 m (G = 6. 67 x 10 -11 Nm 2 /kg 2 , e = 1. 60 x 10 -19 C, m p = 1. 67 x 10 -27 kg)