Answer
Consider the time taken to completion time (in months) for the construction of a particular model of homes: 4.1 3.2 2.8 2.6 3.7 3.1 9.4 2.5 3.5 3.8 Find the mean, median mode, first quartile and third quartile. Find the outlier?
To find the mean, we add up all the values and divide by the number of values:
Mean = (4.1 + 3.2 + 2.8 + 2.6 + 3.7 + 3.1 + 9.4 + 2.5 + 3.5 + 3.8) / 10
Mean = 36.7 / 10
Mean = 3.67
To find the median, we need to put the values in order:
2.5, 2.6, 2.8, 3.1, 3.2, 3.5, 3.7, 3.8, 4.1, 9.4
The middle number is the median, which is 3.35 in this case.
To find the mode, we look for the value that appears most often. In this case, there is no mode as no value appears more than once.
To find the first quartile (Q1), we need to find the value that separates the bottom 25% of the data from the top 75%. We can do this by finding the median of the lower half of the data:
2.5, 2.6, 2.8, 3.1, 3.2
The median of this lower half is 2.8, so Q1 = 2.8.
To find the third quartile (Q3), we need to find the value that separates the bottom 75% of the data from the top 25%. We can do this by finding the median of the upper half of the data:
3.7, 3.8, 4.1, 9.4
The median of this upper half is 3.95, so Q3 = 3.95.
To find the outlier, we can use the rule that any value more than 1.5 times the interquartile range (IQR) away from the nearest quartile is considered an outlier. The IQR is the difference between Q3 and Q1:
IQR = Q3 - Q1
IQR = 3.95 - 2.8
IQR = 1.15
1.5 times the IQR is 1.5 * 1.15 = 1.725.
The only value that is more than 1.725 away from either Q1 or Q3 is 9.4. Therefore, 9.4 is the outlier in this data set.
Answer
To find the perimeter of a regular polygon with n sides, we can use the formula:
Perimeter = n * s
where s is the length of each side. To find s, we can use trigonometry to find the length of one of the sides and then multiply by the number of sides.
In a regular polygon with n sides, the interior angle at each vertex is given by:
Interior angle = (n - 2) * 180 degrees / n
In a 15-sided polygon, the interior angle at each vertex is:
(15 - 2) * 180 degrees / 15 = 156 degrees
If we draw a line from the center of the polygon to a vertex, we form a right triangle with the side of the polygon as the hypotenuse, the distance from the center to the vertex as one leg, and half of the side length as the other leg. Using trigonometry, we can find the length of half of the side:
sin(78 degrees) = 12 / (1/2 * s)
s = 2 * 12 / sin(78 degrees)
s ≈ 2.17 inches
Finally, we can find the perimeter of the polygon:
Perimeter = 15 * s
Perimeter ≈ 32.55 inches
Rounding this to the nearest whole number, we get that the best approximation for the perimeter is 33 inches. Therefore, the closest option is (1) 68 inches.
Which function is graphed to the right?
A. f(x) = ¹₂ +3 x-2
B. f(x)=¹+2
C. f(x) =3x+2
The rational function graphed in this problem is given as follows:
B. f(x) = 1/(x - 3) + 2.
How to obtain the rational function?From the graph, the asymptotes of the rational function are given as follows:
Vertical asymptote at x = 3 -> the function is not defined at x = 3.Horizontal asymptote at y = 2 -> as x goes to infinity, f(x) approaches y = 2.Considering that the function has a vertical asymptote at x = 3, we have that:
f(x) = 1/(x - 3).
Considering the horizontal asymptote at y = 2, we have that:
f(x) = 1/(x - 3) + 2.
More can be learned about rational functions at https://brainly.com/question/1851758
#SPJ1
What is the 5280th digit in the decimal expansion of 5/17
The second digit after the decimal point is 9. We repeat this process until we have found the 5280th digit:
```
0.294117647058823529...
50
Calculate the decimal expansion?To find the 5280th digit in the decimal expansion of 5/17, we need to find the first 5280 digits of the decimal expansion and then look at the 5280th digit.
To do this, we can use long division to divide 5 by 17. We start by dividing 5 by 17 to get the first digit after the decimal point:
```
0.294117647058823529...
```
We can see that the first digit after the decimal point is 2. To get the second digit, we multiply the remainder (5) by 10 and then divide by 17:
```
5 * 10 = 50
50 / 17 = 2 remainder 16
```
The second digit after the decimal point is 9. We repeat this process until we have found the 5280th digit:
```
0.294117647058823529...
50
-----
5 * 10 = 50 | 16.0000000000000000000000000000000000000000000000000000000000000000000000...
0
---
160
153
---
70
68
--
20
17
--
30
17
--
130
119
---
110
102
---
80
68
--
120
119
---
10
8
--
20
17
--
30
17
--
130
119
---
110
102
---
80
68
--
120
119
---
10
8
--
20
17
--
30
17
--
130
119
---
110
102
---
80
68
--
120
119
---
10
8
--
20
17
--
30
17
--
130
119
---
110
102
---
80
68
--
120
119
---
10
8
--
20
17
--
30
17
--
130
119
---
110
102
---
80
68
--
120
119
---
10
8
--
20
17
--
30
17
--
130
119
---
110
102
---
80
68
--
120
119
---
10
8
--
20
17
--
30
17
--
130
119
---
110
102
---
80
68
--
120
119
---
10
8
--
20
17
--
30
Learn more about Decimal expansion
brainly.com/question/31875919
#SPJ11
7. At Burger Heaven a double contains 2 meat patties and 6 pickles, whereas a
triple contains 3 meat patties and 3 pickles. Near closing time one day, only
24 meat patties and 48 pickles are available. If a double burger sells for
$1. 20 and a triple burger sells for $1. 50, then how many of each should be
made to maximize the total revenue?
(4. 6 5pts)
a) Write your constraints (1pt)
At Burger Heaven, to maximize the total revenue from selling double burgers containing 2 meat patties and 6 pickles, you need to consider the following constraints:
1. Ingredient availability: Ensure that there are enough meat patties and pickles in stock to meet the demand for double burgers.
2. Production capacity: The kitchen staff must be able to efficiently prepare and assemble the double burgers without compromising on quality.
3. Pricing strategy: Set a competitive price for the double burger to attract customers and generate optimal revenue.
4. Demand forecasting: Accurately predict customer demand for the double burger to prevent overstocking or understocking of ingredients, which can impact revenue.
To maximize total revenue at Burger Heaven, follow these steps:
a) Analyze the availability of meat patties and pickles to determine how many double burgers can be made with the current inventory.
b) Evaluate the production capacity of the kitchen staff to ensure that they can efficiently prepare and assemble the double burgers.
c) Research the market to set a competitive price for the double burger, considering the costs of ingredients, labor, and other expenses.
d) Forecast customer demand for the double burger to ensure optimal inventory levels and to meet customer expectations.
By addressing these constraints and following the steps above, Burger Heaven can successfully maximize its total revenue from selling double burgers with 2 meat patties and 6 pickles.
To know more about Burger Heaven refer here
https://brainly.com/question/31361962#
#SPJ11
A non-government that supports palay production in the philippines conducted the research that answer the question: is the proportion of palay harvested different from 0. 50 of all the farm crops are harvested? in a sample of 200 one-hectare farm lands, 96 harvested palay.
For the sample size of 200 and sample data 96 there is no sufficient evidence to conclude that proportion of palay harvested is different from 0.50.
Sample size 'n' = 200
The proportion of palay harvested is different from 0.50
Use a hypothesis test.
Let us assume the null hypothesis H₀ is that the proportion of palay harvested is equal to 0.50,
and the alternative hypothesis Hₐ is that the proportion of palay harvested is different from 0.50.
H₀: p = 0.50 proportion of palay harvested is equal to 50%
Hₐ: p ≠ 0.50 proportion of palay harvested is not equal to 50%
where p is the population proportion of palay harvested.
To test this hypothesis, use the sample data of 96 out of 200 one-hectare farm lands that harvested palay.
The sample proportion of palay harvested is,
p₁= 96/200
= 0.48
To determine if this sample proportion is significantly different from the hypothesized proportion of 0.50,
Use a two-tailed z-test with a significance level of α = 0.05.
The test statistic is calculated as,
z = (p₁ - p) / √(p(1-p)/n)
where n is the sample size.
Substituting the values, we get,
z = (0.48 - 0.50) / √(0.50(1-0.50)/200)
⇒ z = -0.5658
Using a z-table,
The probability of getting a z-value of -0.5658 or lower in the left tail of the distribution is approximately 0.7123.
Since this is a two-tailed test,
Probability of getting a z-value of 0.5658 or higher in the right tail of the distribution is also approximately 0.7123
p-value for this test is 0.7123+ 0.7123 = 1.4246
Since the p-value is greater than the significance level of α = 0.05,
Fail to reject the null hypothesis.
Therefore, do not have sufficient evidence to conclude that the proportion of palay harvested is different from 0.50.
learn more about proportion here
brainly.com/question/27316464
#SPJ4
Graph: 3y = 6
-
-6 -4 -2
6
4
2
-2
त्र
-6
y
2 4
st
Click or tap the graph to plot a point.
6
X
४
Draw
y
Simon is filling a cylindrical water dispenser that has a radius of 7 inches and a height of 20 inches. Which of these is the best estimate of the volume of this water dispenser?
A 140 in
b 2,940 in
c 840 in
d 11,769 in
PLEASE ANSWER FAST
The best estimate of the volume of this cylindrical water dispenser is 2940 in³. The correct option is b.
To estimate the volume of the cylindrical water dispenser, we can use the formula for the volume of a cylinder, which is given by V = πr²h, where V is the volume, π is a mathematical constant approximately equal to 3.14, r is the radius, and h is the height.
Given that the radius of the water dispenser is 7 inches and the height is 20 inches, we can substitute these values into the formula:
V = π(7²)(20)
V = π(49)(20)
V ≈ 3.14 × 49 × 20
V ≈ 3.14 × 980
V ≈ 3075.2 in³
From the given options, the closest estimate to the calculated volume of approximately 3075.2 in³ is option B: 2940 in³. While it is not an exact match, it is the closest estimate among the options provided.
To know more about volume, refer to the link below:
https://brainly.com/question/30261718#
#SPJ11
A triangular prism is 15 feet long. It has a triangular face with a base of 10 feet the volume of the prism is 945 ft. What is the height of its triangular height
The height of the triangular face of a triangular prism with a length of 15 feet and a base of 10 feet, and a volume of 945 cubic feet is 12.6 feet."
The formula for the volume of a triangular prism is given by:
Volume = (1/2) x base x height x length
where base and height refer to the base and height of the triangular face, and length refers to the length of the prism.
Substituting the given values, we have:
945 = (1/2) x 10 x height x 15
Simplifying:
945 = 75 x height
Dividing both sides by 75:
height = 945/75
height = 12.6 feet
For more questions on triangular prism
https://brainly.com/question/23178481
#SPJ11
The hypotenuse of a right triangle measures 29 cm. One leg is 1 cm shorter than the other. What are the lengths of the legs?
The length of the legs are 20 cm and 21 cm
What is the length of the legs?The Pythagorean Theorem states that in a right-angled triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the lengths of the other two sides.
We know that from the Pythagoras theorem;
[tex]c^2 = a^2 + b^2[/tex]
Let the hypotenuse be c and the other two sides be a and b
We have that;
[tex]29^2 = x^2 + (x -1)^2\\841 = x^2 + x^2 - 2x + 1\\841 = 2x^2 - 2x + 1\\2x^2 - 2x + 1 - 841 = 0\\2x^2 - 2x - 840 = 0\\x = -20 or 21[/tex]
Since length can not be negative, x = 21 cm
Thus the other leg is 20 cm
Learn more about hypotenuse:https://brainly.com/question/29407794
#SPJ4
PLEASEEEE HELPPP ASAP 20 PTS
Use long division to determine the quotient of the following expression.
Write the quotient in standard form with the term of largest degree on the left. (10x^(2)+3x-77)-:(2x+7)
The quotient of the division 10x² + 3x - 77 ÷ 2x + 7 is 5x - 16
Evaluating the long division expressionsThe quotient expression is given as
10x² + 3x - 77 ÷ 2x + 7
The long division expression is represented as
2x + 7 | 10x² + 3x - 77
So, we have the following division process
5x - 16
2x + 7 | 10x² + 3x - 77
10x² + 35x
--------------------------------
-32x - 77
-32x - 112
-------------------------------------
35
Hence, the quotient of the long division is 5x - 16
Read more about long division at
brainly.com/question/30989082
#SPJ1
sets x y and z are defined below a number will be randomly selected from set x what is the probability that the selected number will be an element of set y and an element of set z.
x= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Y= (5, 10, 15, 20, 25)
Z= (1,5,25)
A. 0.1
B. 0.2
C. 0.5
D. 0.6
E. 0.8
When a number is chosen from set x, there is a 0.2 chance that the chosen number will also be found in sets y and z. The answer is option (B). 0.2.
What is Probability?The ratio of favourable outcomes to all possible outcomes of an event is known as the probability. The symbol x can be used to express the quantity of successful outcomes for a study with 'n' outcomes. The probability formula determines the likelihood that an event will occur.
It is the ratio of effective results to all effective results. The study of probability is a branch of mathematics that examines the likelihood that an event will occur. Probability, which expresses the likelihood that an event will occur, is calculated by dividing the total number of occurrences by the total number of positive events.
The number of elements of Both Y and Z answer is 5 and 25.
The probability of selecting a number from x that is an element of y and z
Intersection of y and z is (5, 25)
No.of elements in x is = 2/10
= 1/5
= 0.2
To know more about probability, visit:
brainly.com/question/29251004
#SPJ1
To the nearest hundredth, what is the value of x?
Use a trigonometric ratio to compute a distance
Therefore, to the nearest hundredth, the value of x is 42.31 units.
What is triangle?A triangle is a three-sided polygon, which is a closed shape made up of straight lines. It is one of the simplest geometric shapes and is used extensively in mathematics, science, and engineering. In a triangle, each side connects two vertices or corners, and each vertex is where two sides intersect. The three angles of a triangle always add up to 180 degrees, and the sum of the lengths of any two sides is always greater than the length of the third side. Triangles can be classified by the lengths of their sides and the sizes of their angles, which gives rise to different types such as equilateral, isosceles, scalene, acute, right, and obtuse triangles. Triangles have many applications, such as in geometry, trigonometry, physics, and engineering, and they are fundamental to understanding the properties of other shapes and mathematical concepts.
Here,
In a right triangle, the sine of an angle is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse. So, for this triangle, we have:
sin(53°) = opposite / hypotenuse
sin(53°) = x / 53
To solve for x, we can rearrange the equation as follows:
x = 53 * sin(53°)
Using a calculator to evaluate sin(53°), we get:
sin(53°) = 0.7986 (rounded to four decimal places)
Substituting this value into the equation, we get:
x = 53 * 0.7986
x = 42.308 (rounded to two decimal places)
To know more about triangle,
https://brainly.com/question/28600396
#SPJ1
A square has sides of length s. A rectangle is 6 inches shorter than the square and 1 inch longer. Which of the following expressions represents the perimeter of the rectangle?
The perimeter of the rectangle is represented by the expression 4s - 10.
How to calculate perimeter of a rectangle?
To calculate the perimeter of a rectangle, you need to add up the lengths of all four sides.
In the problem given, we know that the rectangle is 6 inches shorter than the square and 1 inch longer.
Let's call the length of the rectangle l and the width w.
We know that the length of the square is equal to its width (since it's a square), so the length of the rectangle must be l = s - 6, and the width must be w = s + 1.
To find the perimeter, we add up all four sides: P = 2l + 2w = 2(s-6) + 2(s+1) = 4s - 10.
Therefore, the expression that represents the perimeter of the rectangle is 4s - 10.
Learn more about perimeter
brainly.com/question/6465134
#SPJ11
Answer the following questions using what you've learned from this lesson. Write your responses in the
space provided.
For questions 1-4, use the following data to calculate and interpret the linear regression equation
Worldwide carbon dioxide emissions have increased over the years as Earth's population has grown. The
table shows the world carbon dioxide emissions, in millions of metric tons, from 1950 to 1990
Year
1950
1960
Response variable:
1970
1980
1990
1. Which is the explanatory variable.
and which is the response
variable?
Explanatory variable:
Name
Date
Emissions
6000
9500
15,000
19,300
22,500
2. Calculate the linear regression
equation from the above data.
The expected value of emissions when Year is 0, which makes up the intercept of the line (-666708.3) .
what is linear regression ?By fitting a linear equation to the observed data, the statistical technique of linear regression is utilized to describe the connection between two variables. Finding the line that best fits the data and can accurately depict the interaction of the variables is the aim of linear regression. In regression analysis, one variable is regarded as the independent (or predictor) variable, and the other is regarded as the dependent (or response) factor (or response variable). Y = mx + b, where x is the underlying factor, m is the line's slope, and b is the y-intercept, is a linear equation that describes the connection between both variables.
given
The linear regression equation that results is:
Emissions = 666708.3 - 347.6 Year
This equation models the link between Year (the explanatory variable) and Emissions as a straight line (the response variable).
According to the line's slope (347.6), emissions rose by an average of 348 million metric tonnes annually during this time.
The expected value of emissions when Year is 0, which makes up the intercept of the line (-666708.3) .
To know more about linear regression visit:
https://brainly.com/question/29665935
#SPJ9
By using integration by parts, find the integral 2∫⁷ in x dx b) Hence, find 2∫⁷ in √x dx
The integral is:
[tex](4/3)x^(3/2) ln(x) - (2/3)∫x^(1/2) dx = (4/3)x^(3/2) ln(x) - (4/5)x^(5/2) + C[/tex]
Solve the integrals using integration by parts.
a) To find [tex]2∫x⁷ln(x) dx[/tex], we'll use integration by parts with the formula: [tex]∫u dv = uv - ∫v du. Let's choose:u = ln(x) = > du = (1/x) dxdv = x⁷ dx = > v = (1/8)x⁸[/tex]
Now, apply the integration by parts formula:
[tex]2∫x⁷ln(x) dx = 2[uv - ∫v du] = 2[((1/8)x⁸ ln(x) - ∫(1/8)x⁸(1/x) dx)]= (1/4)x⁸ ln(x) - (1/4)∫x⁷ dx = (1/4)x⁸ ln(x) - (1/32)x⁸ + C[/tex]
b) To find 2∫√x ln(x) dx, we'll use a similar approach. Let's choose:
[tex]u = ln(x) = > du = (1/x) dxdv = √x dx = > v = (2/3)x^(3/2)[/tex]
Now, apply the integration by parts formula:
[tex]2∫√x ln(x) dx = 2[uv - ∫v du] = 2[((2/3)x^(3/2) ln(x) - ∫(2/3)x^(3/2)(1/x) dx)]= (4/3)x^(3/2) ln(x) - (2/3)∫x^(1/2) dx = (4/3)x^(3/2) ln(x) - (4/5)x^(5/2) + C[/tex]
To learn more about parts formula, refer below:
https://brainly.com/question/30900582
#SPJ11
how to find the polynmial closest to another polynomial in an inner product space
To find the polynomial closest to another polynomial in an inner product space, you can follow these steps:
Choose an inner product on the space of polynomials. One common inner product on this space is the L2 inner product, which is defined as:
<f,g> = ∫a^b f(x)g(x) dx,
where a and b are the endpoints of the interval on which the polynomials are defined.
Let P be the space of polynomials of degree at most n, where n is the degree of the polynomial you want to approximate. Let f be the polynomial you want to approximate, and let g be an arbitrary polynomial in P.
Define the error between f and g as e = f - g.
Compute the inner product of e with itself:
<e,e> = ∫[tex]a^b (f(x) - g(x))^2 dx.[/tex]
Minimize this inner product with respect to g. This can be done by setting the derivative of <e,e> with respect to g equal to zero and solving for g.
The polynomial that minimizes the error is the polynomial closest to f in the L2 sense.
Learn more about polynomial
https://brainly.com/question/11536910
#SPJ4
You deposit $2000 earned at a summer job in an account that pays 4. 2% simple interest. What is the balance in the account in 3 years? Estimate to the nearest whole number
A deposit of $2000 earning 4.2% simple interest for 3 years will have a balance of $2252. The estimated balance rounded to the nearest whole number is $2252.
To calculate the balance in the account after 3 years, we can use the formula
balance = principal x (1 + interest rate x time)
Plugging in the values, we get
balance = 2000 x (1 + 0.042 x 3)
balance = 2000 x (1 + 0.126)
balance = 2000 x 1.126
balance = 2252
Therefore, the balance in the account after 3 years is $2252.
As for the estimate, since the interest is simple, we can approximate it by multiplying the interest rate by the number of years and adding it to the principal. So, the estimate would be
estimate = principal x (1 + interest rate x time)
estimate = 2000 x (1 + 0.042 x 3)
estimate = 2000 x (1 + 0.126)
estimate = 2000 x 1.126
estimate = 2252
Rounding to the nearest whole number, the estimate is also $2252.
To know more about interest:
https://brainly.com/question/15089941
#SPJ4
Find the equation for the line that:
passes through (-4,-7) and has slope -6/7
The slope intercept form of the function is:
Answer: [tex]y=\frac{-6}{7} x+\frac{-73}{7}[/tex]
Step-by-step explanation:
The slope intercept form for a line is y=mx+b, where m is slope and b is the y intercept. For this form, we need to know the slope and y intercept.
The slope and one x and y are give, so we can plug in all of these values into the slope intercept equation to solve for b.
Doing so, we get:
[tex]y=mx+b\\-7=\frac{-6}{7} (-4)+b\\b=-7-\frac{24}{7} \\b=\frac{-73}{7}[/tex]
So, knowing the slope and y intercept, our equation is
[tex]y=\frac{-6}{7} x+\frac{-73}{7}[/tex]
Identify which type of sampling is used: random, stratified, cluster, systematic, or convenience.
1. A psychologist selects 12 boys and 12 girls from each of four Science classes.
2. When he made an important announcement, he based his conclusion on 10 000 responses, from
100 000 questionnaires distributed to students.
3. A biologist surveys all students from each of 15 randomly selected classes.
4. The game show organizer writes the name of each contestant on a separate card, shuffles the cards, and
draws five names.
5. Family Planning polls 1 000 men and 1 000 women about their views concerning the use of contraceptives.
6. A hospital researcher interviews all diabetic patients in each of ten randomly selected hospitals.
1. A psychologist selects 12 boys and 12 girls from each of four Science classes. = Stratified sampling
2. When he made an important announcement, he based his conclusion on 10 000 responses, from 100 000 questionnaires distributed to students= Convenience sampling
3. A biologist surveys all students from each of 15 randomly selected classes = Cluster sampling
4. The game show organizer writes the name of each contestant on a separate card, shuffles the cards, and draws five names= Random sampling
5. Family Planning polls 1 000 men and 1 000 women about their views concerning the use of contraceptives= Stratified sampling
6. A hospital researcher interviews all diabetic patients in each of ten randomly selected hospitals = Cluster sampling
To know more about "Stratified sampling" refer here:
https://brainly.com/question/2054469#
#SPJ11
Jose rented a truck for one day. there was a base fee of $17.99, and there was an additional charge of 83 cents for each mile driven. jose had to pay $194.78 when he returned the truck. for how many miles did he drive the truck?
Jose drove the truck for approximately 213 miles.
Let's assume that Jose drove the truck for m miles.
We know that there was a base fee of $17.99, so the remaining amount after that base fee went towards the additional charge of 83 cents per mile.
So, the additional charge for the miles driven can be represented as 0.83m.
The total cost that Jose had to pay was $194.78. Therefore, we can write the equation:
17.99 + 0.83m = 194.78
Solving for m:
0.83m = 194.78 - 17.99
0.83m = 176.79
m = 213.072
So, Jose drove the truck for approximately 213 miles.
To know more about miles driven, refer to the link below:
https://brainly.com/question/26166745#
#SPJ11
A family has four children. If Y is a random variable that pertains to the number of female children. What are the possible values of Y?
The possible values of Y are 0, 1, 2, 3, and 4.
What values can Y, the random variable for the number of female children in a family of four children, take?The number of female children in a family with four children can be any value between 0 and 4, inclusive.
To see why, we can consider all the possible outcomes of the family having four children, assuming that the probability of having a boy or a girl is 0.5 (assuming a binomial distribution).
There are 2 possibilities for the first child (boy or girl), 2 possibilities for the second child, 2 possibilities for the third child, and 2 possibilities for the fourth child, making a total of 2x2x2x2 = 16 possible outcomes.
Out of these 16 outcomes, we can count the number of outcomes that correspond to each possible value of Y:
If Y = 0, then all four children must be boys, which is 1 outcome.
If Y = 1, then there are 4 ways to have one girl (first, second, third, or fourth child).
If Y = 2, then there are 6 ways to have two girls (first two, first three, first four, second three, second four, or third fourth child).
If Y = 3, then there are 4 ways to have three girls (first three, first four, second four, or third four child).
If Y = 4, then all four children must be girls, which is 1 outcome.
Therefore, the possible values of Y are 0, 1, 2, 3, and 4.
Learn more about Binomial distribution
brainly.com/question/31197941
#SPJ11
A circular mirror has a radius of 3. 4 feet rosalinda is decorating the edge of the mirror with Washington tape if she has exactly enough washi tape which measurement is closest to the length of the piece of washi tape in feet
The measurement closest to the length of the piece of washi tape needed is approximately 21.36 feet.
The circumference of the circular mirror can be calculated using the formula C = 2πr, where r is the radius. Plugging in the given radius of 3.4 feet, we get C = 2π(3.4) = 21.36 feet (rounded to two decimal places). Since Rosalinda is decorating the edge of the mirror with washi tape, she needs a piece of tape that is equal in length to the circumference of the mirror. Therefore, the length of the piece of washi tape needed is closest to 21.36 feet.
More on circumference: https://brainly.com/question/19717342
#SPJ11
Chris buys 19 raffle tickets. A total of 250 tickets were sold. Find the probability that Chris does not win the prize
Answer:For 19 to 250 odds against winning;
Probability of:
Winning = (0.9294) or 92.9368%
Losing = (0.0706) or 7.0632%
"Odds for" winning: 250:19
"Odds against" winning: 19:250
Step-by-step explanation:
A flare is launched from a boat and travels in a parabolic path until reaching the water. Write a quadratic function that
models the path of the flare with a maximum height of 300 meters, represented by a vertex of (59, 300), landing in the water at the point
(119, 0).
f(x) =
Answer:
We can start by using the vertex form of a quadratic function:
f(x) = a(x - h)^2 + k
where (h, k) is the vertex of the parabola.
We know that the vertex is (59, 300), so we can plug in these values:
f(x) = a(x - 59)^2 + 300
To determine the value of "a", we can use the fact that the parabola passes through the point (119, 0). So we substitute these values for x and y and solve for "a":
0 = a(119 - 59)^2 + 300
-300 = 3600a
a = -1/12
Substituting this value of "a" back into the equation for f(x), we get:
f(x) = (-1/12)(x - 59)^2 + 300
This quadratic function models the path of the flare, with a maximum height of 300 meters at the vertex (59, 300), and landing in the water at the point (119, 0).
A ramp is used to go up one step.
The ramp is 3 m long. The step is 30 cm high.
How far away from the step (x) does the ramp start?
Give your answer in metres, to the nearest centimetre.
Answer:
3 meters = 300 centimeters
Using the Pythagorean Theorem:
[tex] {x}^{2} + {30}^{2} = {300}^{2} [/tex]
[tex] {x}^{2} + 900 = 90000 [/tex]
[tex] {x}^{2} = 89100[/tex]
[tex]x = 90 \sqrt{11} = 298.49[/tex]
x = about 298 centimeters
= about 2.98 meters
On the same coordinate plane, mark all points (x,y) such that (A) y=x-2, (B) y=-x-2, (C) y=|x|-2
The points that satisfy equations (A), (B), and (C) are (-2,-4), (4,2), and (-4,2).
we can plot the graphs of each of these equations on the same coordinate plane and then identify the points where they intersect.
To mark all the points that satisfy the equations (A) [tex]y=x-2[/tex], (B) y=x-2[tex]y=x-2[/tex] and (C) [tex]y=|x|-2[/tex],
For equation (A), we can see that the slope is 1 (the coefficient of x) and the y-intercept is -2 (the constant term). This means that the graph of equation (A) is a straight line that passes through the point (0,-2) and has a slope of 1.
We can plot this line on the coordinate plane by marking the point (0,-2) and then drawing a line with slope 1 that passes through this point.
For equation (B), we can see that the slope is -1 (the coefficient of x) and the y-intercept is -2 (the constant term).
This means that the graph of equation (B) is a straight line that passes through the point (0,-2) and has a slope of -1. We can plot this line on the coordinate plane by marking the point (0,-2) and then drawing a line with slope -1 that passes through this point.
For equation (C), we can see that the y-intercept is -2 and that the graph of the equation is symmetric with respect to the y-axis.
This means that we only need to plot the part of the graph that lies in the first quadrant, and then we can use symmetry to find the part that lies in the other quadrants.
To plot the graph of equation (C) in the first quadrant, we can start by marking the point (2,0) (since y=|x|-2 when x=2) and then draw a V-shape with the vertex at this point and the arms of the V going up and to the right.
To find the points where these three graphs intersect, we can look for the points where any two of the graphs intersect. For example, we can see that the graphs of equations (A) and (B) intersect at the point (-2,-4).
Similarly, we can see that the graphs of equations (A) and (C) intersect at the point (4,2), and the graphs of equations (B) and (C) intersect at the point (-4,2).
To know more about coordinate plan refer here
https://brainly.com/question/15344425#
#SPJ11
The school store sells spiral notebooks in four colors and three different sizes. The table shows the sales
by size and color for 386 notebooks What is the experimental probability that the next customer buys a
red notebook with 150 pages? Enter your answer as a simplified fraction.
Red
53
100 Pages
150 Pages
200 Pages
Green
31
47
16
Blue
21
57
22
Yellow
12
27
12
63
25
The experimental probability is
The experimental probability that the next customer buys a red notebook with 150 pages is 53/386 or 13.73%.
To find the experimental probability of the next customer buying a red notebook with 150 pages, we need to first identify the total number of red 150-page notebooks sold and then divide that by the total number of notebooks sold.
From the table, we can see that 53 red 150-page notebooks were sold. The total number of notebooks sold is 386.
The experimental probability is therefore the ratio of red 150-page notebooks sold to the total number of notebooks sold:
Probability = (Number of red 150-page notebooks) / (Total number of notebooks)
Probability = 53 / 386
The simplified fraction for the experimental probability is 53/386 or 13.73%.
Learn more about experimental probability : https://brainly.com/question/72752
#SPJ11
What is the local rate of change on this parabola at the point , (-6,8)?
To find the local rate of change on a curve at a specific point, we need to find the slope of the tangent line at that point. The tangent line represents the instantaneous rate of change or the rate of change at that particular point.
To find the slope of the tangent line at (-6,8) on the parabola, we need to take the derivative of the function at that point.
Assuming that the parabola is defined by the equation [tex]y = ax^2 + bx + c,[/tex]
where a, b, and c are constants, we can find the derivative of the function as follows:
[tex]dy/dx = 2ax + b[/tex]
Substituting [tex]x = -6,[/tex] we get:
[tex]dy/dx = 2a(-6) + b[/tex]
To find the values of a and b, we need more information about the parabola.
If we have the equation of the parabola or another point on the curve, we can use it to find the values of a and b.
Once we have the values of a and b, we can substitute them into the derivative equation and evaluate it at [tex]x = -6[/tex] to find the slope of the tangent line at (-[tex]6,8[/tex]), which is the local rate of change at that point.
To know more about parabola refer here
https://brainly.com/question/11356858#
#SPJ11
Use the given acceleration function and initial conditions to find the velocity vector v(t), and position vector r(t). Then find the position at time t = 9. a(t) = −cos ti − sin tj v(0) = j + k, r(0) = i v(t) = r(t) = r(9) =
find the position at time t = 9. a(t) = −cos ti − sin tj v(0) = j + k, r(0) = i v(t) = r(t) = r(9) = This gives you the position vector r(9) as a function of sin(9) and cos(9).
To find the velocity vector v(t) and position vector r(t), we need to integrate the given acceleration function a(t) and apply the initial conditions. Here's a step-by-step explanation:
1. Given acceleration function: a(t) = -cos(t)i - sin(t)j
2. Integrate a(t) with respect to t to find v(t):
v(t) = ∫(-cos(t)i - sin(t)j) dt = (sin(t)i + cos(t)j) + C, where C is a constant vector.
3. Apply initial condition v(0) = j + k:
v(0) = sin(0)i + cos(0)j + C = j + k
C = -i + j + k
4. The velocity function is: v(t) = sin(t)i + cos(t)j - i + j + k
Now let's find the position vector r(t):
5. Integrate v(t) with respect to t to find r(t):
r(t) = ∫(sin(t)i + cos(t)j - i + j + k) dt = (-cos(t)i + sin(t)j + t(k) + D, where D is another constant vector.
6. Apply initial condition r(0) = i:
r(0) = -cos(0)i + sin(0)j + 0(k) + D = i
D = i
7. The position function is: r(t) = -cos(t)i + sin(t)j + tk + i
Finally, let's find the position at time t = 9:
8. r(9) = -cos(9)i + sin(9)j + 9k + i
This gives you the position vector r(9) as a function of sin(9) and cos(9).
to learn more about velocity vectors click here:
https://brainly.com/question/28491008
#SPJ11
find the missing no 3,4,13,?,8,168
Answer:
I believe it is 38
Step-by-step explanation:
HELPPPPPPPPPPP HELPPPP PLEASEEE ITS MATHHHH
sorry, I am really sorry I really need the points. Just by seeing it I think in the 3 one am not sure but don't trust me because I just saw it and thought it was 3........