Answer:
3 L
Explanation:
You want to know the volume of water vapor produced at STP when 1 L of C₆H₆ reacts with oxygen.
ReactantsThe given balanced reaction equation tells us that 6 moles of water vapor are produced from each 2 moles of C₆H₆. At STP, the volume of water vapor will be 3 times the volume of C₆H₆.
3 liters of water vapor are produced by reacting 1 liter of C₆H₆ with oxygen.
Calculate the molarity of 0. 50 moles of CaCl2 in 3500 mL of solution
The molarity of 0.50 moles of CaCl₂ in 3500 mL of solution is approximately 0.143 M.
To calculate the molarity of 0.50 moles of CaCl₂ in 3500 mL of solution, follow these steps:
1. Convert the volume of the solution from milliliters (mL) to liters (L). There is 1000 mL in 1 L, so divide the given volume by 1000:
3500 mL ÷ 1000 = 3.5 L
2. Use the formula for molarity (M), which is the number of moles of solute (in this case, CaCl₂) divided by the volume of the solution in liters (L):
M = moles of solute/volume of solution in L
3. Plug in the values given in the problem: 0.50 moles of CaCl₂ and 3.5 L of solution:
M = 0.50 moles / 3.5 L
4. Calculate the molarity:
M ≈ 0.143 M
Learn more about molarity at https://brainly.com/question/30404105
#SPJ11
Translate the following balanced chemical equation into words.
Ba3N2(aq) + 6H2O(l) → 3Ba(OH)2(s) + 2NH3(g)
A. Barium nitrogen reacts with water to yield barium hydroxide and nitrogen hydrogen.
B. Barium nitrate reacts with water to yield barium oxide and nitrogen hydride.
C. Boron nitride reacts with water to yield boron hydroxide and nitrogen trihydride.
D. Barium nitride reacts with water to yield barium hydroxide and nitrogen trihydride.
If 2. 55 L of propane (C3H8) at 30 degree Celsius and 67. 2 kPa is completely burned in excess oxygen, what mass of carbon dioxide will be produced? R=0. 0821 L^ * atm/mol^ * K Write a balanced chemical equation: R=8. 314 L^ * kPa/mol^ * K
295 g of carbon dioxide will be produced.
The balanced chemical equation for the complete combustion of propane is:
[tex]C3H8 + 5O2 → 3CO2 + 4H2O[/tex]
From the equation, we can see that 1 mole of propane produces 3 moles of carbon dioxide. We can use the ideal gas law to determine the number of moles of propane present in 2.55 L at 30°C and 67.2 kPa:
PV = nRT
n = PV/RT
n = (67.2 kPa)(2.55 L)/(0.0821 L·atm/mol·K)(303 K)
n = 2.24 mol
Therefore, the amount of carbon dioxide produced will be:
3 mol [tex]CO2[/tex]/mol [tex]C3H8[/tex] × 2.24 mol [tex]C3H8[/tex] = 6.72 mol [tex]CO2[/tex]
Finally, we can use the molar mass of carbon dioxide to convert moles to mass:
6.72 mol [tex]CO2[/tex] × 44.01 g/mol [tex]CO2[/tex] = 295 g [tex]CO2[/tex]
Therefore, 295 g of carbon dioxide will be produced.
To know more about ideal gas law refer to-
https://brainly.com/question/28257995
#SPJ11
Identify the limiting reactant and determine the mass of CO2 that can be produced from the reaction of 25. 0 g of C3H8 with 75. 0 g of O2 according to the following equation:
C3H8 + 5 O2 ---> 3 CO2 + 4 H2O
Help immediately PLEASE!!!
Oxygen (O₂) is the limiting reactant, and the maximum mass of CO₂ that can be produced is 61.6 g.
To determine the limiting reactant and the amount of CO₂ produced, we need to perform a stoichiometric calculation using the balanced chemical equation;
C₃H₈ + 5O₂ → 3CO₂ + 4HO
First, we need to determine which reactant is limiting by calculating the amount of CO₂ that can be produced from each reactant and comparing them. We assume that both reactants are completely consumed in the reaction.
For C₃H₈;
Molar mass of C₃H₈ = 44.1 g/mol
Moles of C₃H₈ = 25.0 g / 44.1 g/mol = 0.567 mol
Moles of CO₂ produced = 0.567 mol x (3 mol CO₂ / 1 mol C₃H₈) = 1.70 mol
Mass of CO₂ produced = 1.70 mol x 44.01 g/mol = 74.8 g
For O₂ ;
Molar mass of O₂ = 32.0 g/mol
Moles of O₂ = 75.0 g / 32.0 g/mol = 2.34 mol
Moles of CO₂ produced = 2.34 mol x (3 mol CO₂ / 5 mol O₂ ) = 1.40 mol
Mass of CO₂ produced = 1.40 mol x 44.01 g/mol
= 61.6 g
Since O₂ produces less CO₂ than C₃H₈, it is the limiting reactant.
Therefore, the maximum mass of CO₂ that can be produced is 61.6 g.
To know more about limiting reactant here
https://brainly.com/question/19654705
#SPJ4
write the net acid-base reaction that occurs when hbr is added to water. (use the lowest possible coefficients. omit states-of-matter in your answer.) chempadhelp
The net acid-base reaction that occurs when HBr is added to water can be represented as HBr + H₂O → H₃O + Br⁻
When HBr is added to water, it dissociates into its constituent ions, H+ and Br-. These ions then interact with the water molecules, leading to the formation of hydronium ions (H₃O⁺) and bromide ions (Br⁻). This reaction is known as a proton transfer reaction, as a proton (H+) is transferred from the acid (HBr) to the water molecule (H2O) to form a hydronium ion (H₃O⁺).
This reaction can also be understood in terms of the Arrhenius theory of acids and bases, which defines acids as compounds that release hydrogen ions (H⁺) when dissolved in water. In this case, HBr is an acid that releases H⁺ ions when dissolved in water, leading to the formation of the hydronium ion (H₃O⁺).
The reaction between HBr and water is an example of an acid-base reaction, where the acid (HBr) donates a proton to the water molecule (H₂O) to form the hydronium ion (H₃O⁺), which is the conjugate acid of water. The bromide ion (Br⁻) is the conjugate base of HBr.
To know more about the Acid-base reaction, here
https://brainly.com/question/29460273
#SPJ4
Using Mendeleev's table, predict the formula, using subscripts to denote the number of each atom in the formula, for oxides of carbon ( C
C
) and aluminum ( Al
A
l
).
Mendeleev's periodic table allows us to predict the chemical properties of elements and their compounds. Let's start with oxides of carbon, which are compounds of carbon and oxygen.
Carbon can form two common oxides: carbon monoxide (CO) and carbon dioxide (CO2). In carbon monoxide, there is one carbon atom and one oxygen atom, so the formula would be written as CO with a subscript of 1 for carbon and a subscript of 1 for oxygen. In carbon dioxide, there is one carbon atom and two oxygen atoms, so the formula would be written as CO2 with a subscript of 1 for carbon and a subscript of 2 for oxygen.
Moving on to aluminum, it also forms oxides. The most common oxide of aluminum is aluminum oxide (Al2O3). In this compound, there are two aluminum atoms and three oxygen atoms. So the formula would be written as Al2O3 with a subscript of 2 for aluminum and a subscript of 3 for oxygen.
For more questions on: elements
https://brainly.com/question/18096867
#SPJ11
The parents are heterozygous; their offspring’s phenotype are 25% Black 50% speckled & 25% white: What was the phenotype of the two parents
From the given information, we know that the parents are heterozygous, meaning they have two different alleles for the gene that controls coat color in their offspring. Let's use the following symbols to represent the alleles:
- B: the allele for black coat color
- b: the allele for white coat color
Since the offspring have a 25% chance of being black and a 25% chance of being white, we can assume that the parents are both heterozygous for the gene that controls coat color, which means they both have one B allele and one b allele. This is because:
- To be black, an offspring must inherit a B allele from each parent, so the parents must each have one B allele.
- To be white, an offspring must inherit a b allele from each parent, so the parents must each have one b allele.
The fact that the offspring also have a 50% chance of being speckled indicates that speckling is a result of incomplete dominance or co-dominance, where both alleles are expressed together.
Therefore, we can assume that the speckling phenotype is the result of both the B and b alleles being expressed together, rather than a third, intermediate allele.
In summary, based on the phenotype of their offspring, we can infer that the two parents are both heterozygous for the gene that controls coat color, with one B allele and one b allele each.
To know more about information refer here
https://brainly.com/question/30350623#
#SPJ11
Consider the following reaction and its Δ at 25.00 C
Mg(s)+Ni2+(aq)⟶Mg2+(aq)+Ni(s)Δ∘=−408.0 kJ/mol
calculate the standard cell potential ∘cell, for reaction
∘cell=
calculate the equilibrium constant, K, for reaction
K=
The standard cell potential (∆°cell) can be calculated using the formula:
∆°cell = ∆°reduction (reduced) - ∆°oxidation (oxidized)
where ∆°reduction and ∆°oxidation are the standard reduction potentials of the reduction and oxidation half-reactions, respectively.
The oxidation half-reaction is:
Ni2+(aq) + 2e- → Ni(s) ∆°oxidation = - 0.26 V
The reduction half-reaction is:
Mg2+(aq) + 2e- → Mg(s) ∆°reduction = - 2.37 V
Therefore, the standard cell potential is:
∆°cell = ∆°reduction - ∆°oxidation
∆°cell = (-2.37 V) - (-0.26 V)
∆°cell = -2.11 V
The equilibrium constant (K) can be calculated from the standard cell potential using the Nernst equation:
∆°cell = -(RT/nF) ln K
where R is the gas constant (8.314 J/(mol·K)), T is the temperature in Kelvin (298 K), n is the number of electrons transferred in the balanced equation (2), and F is the Faraday constant (96,485 C/mol).
Substituting the values and solving for K, we get:
K = exp(-(∆°cell)/(RT/nF))
K = exp(-((-2.11 V)*(96,485 C/mol)/(8.314 J/(mol·K)298 K2)))
K = 1.1 × 10^12
Therefore, the equilibrium constant for the reaction is 1.1 × 10^12.
Visit here to learn more about Nernst equation brainly.com/question/13043546
#SPJ11
you perform the first test, and your results are the following: 3 of the 10 ml tubes are positive, 2 of the 1 ml tubes are positive, and 1 of the 0.1 ml tubes are positive. what is the mpn for this sample?
The most probable number (MPN) for this sample can be calculated using the MPN table. Based on the results provided, the MPN for this sample is estimated to be 48 per 100 mL.
The MPN method is a statistical approach used to estimate the concentration of microorganisms in a sample. It involves inoculating multiple replicate tubes with different volumes of the sample and observing growth after a specified period of time. The results are then used to estimate the most probable number of microorganisms in the original sample.
In this case, the results of the test indicate that 3 out of 10 ml tubes, 2 out of 1 ml tubes, and 1 out of 0.1 ml tubes were positive for the presence of microorganisms. Based on these results, the MPN for the sample can be estimated using the MPN table. Using the MPN table, we can determine that the number of positive tubes corresponds to a probability of 0.048. Therefore, the MPN for this sample is estimated to be 48 per 100 mL.
This means that there are likely 48 microorganisms present in every 100 mL of the sample. It's worth noting that the MPN method provides an estimate of the concentration of microorganisms in a sample and is subject to some degree of uncertainty. However, it is a widely used method for assessing the microbiological quality of water and other environmental samples.
To know more about the Tube, here
https://brainly.com/question/15720257
#SPJ4
A chemical company has just employed you to solve their financial dilemma. The company has an overabundance of silver nitrate solution and a huge debt that it must settle or announce bankruptcy.
Evaluate the following data and suggest a chemistry based plan for the company that may just prevent it from going bankrupt. (Hint: Think about a type of reaction and how it might be used to make the company money. The answer should include the reaction and an explanation. Use the information below.)
To solve the financial dilemma, the chemical company can consider using the excess silver nitrate solution to synthesize silver nanoparticles, which have various applications in industries.
What is Silver nanoparticles?Silver nanoparticles can be synthesized by reducing silver ions with a reducing agent, and silver nitrate can serve as a source of silver ions.
One possible reaction for the synthesis of silver nanoparticles using silver nitrate is the reduction of silver ions with sodium borohydride (NaBH4). The reaction can be represented as:
AgNO3 + NaBH4 → Ag nanoparticles + NaNO3 + B2H6
In this reaction, silver nitrate is the oxidizing agent, which accepts electrons, while sodium borohydride is the reducing agent, which donates electrons to reduce the silver ions. The reaction also produces sodium nitrate and borane gas as byproducts.
The synthesized silver nanoparticles can be sold to various industries, generating revenue for the company and potentially reducing their debt. The company can also consider optimizing the synthesis process to increase the yield and purity of the silver nanoparticles, which can increase their market value.
Learn more about silver nanoparticles here: https://brainly.com/question/16055011
#SPJ1
Hazel used 45. 7grams of nickel II nitrate Ni(NO3)2 to make a 1. 25M solution. How much water is required to make this solution?
Solve for the GFM=
Hazel needs 0.6975 liters of water to make a 1.25M solution of Ni(NO₃)₂ using 45.7 grams of the solute.
To solve this problem, we need to use the formula:
Molarity (M) = moles of solute / liters of solution
First, we need to find the moles of nickel II nitrate:
moles = mass / molar mass
The molar mass of Ni(NO₃)₂ can be calculated by adding the molar masses of each element:
Ni: 58.69 g/mol
N: 14.01 g/mol
O (3 atoms): 3 x 16.00 g/mol = 48.00 g/mol
Total molar mass = 58.69 + 14.01 + 48.00 = 120.70 g/mol
So, the moles of Ni(NO₃)₂ used by Hazel is:
moles = 45.7 g / 120.70 g/mol = 0.3781 moles
Now, we can use the formula to find the volume of solution:
Molarity (M) = moles of solute / liters of solution
1.25 M = 0.3781 moles / liters of solution
Liters of solution = 0.3781 moles / 1.25 M = 0.3025 L
Therefore, the volume of water required to make the solution is:
Volume of water = Total volume - Volume of solute
Volume of water = 1 L - 0.3025 L = 0.6975 L
So, Hazel needs 0.6975 liters of water to make a 1.25M solution of Ni(NO₃)₂ using 45.7 grams of the solute.
To know more about Molarity :
https://brainly.com/question/19517011
#SPJ11
In terms of both physicality and perspective, what influences support the existence of singular geologic features (e. G. Mauna Kea, Challenger Deep, etc. ) within the Earth’s ocean versus a continental setting?
There are several factors that influence the existence of singular geologic features in the Earth's ocean versus a continental setting, both in terms of physicality and perspective.
Firstly, the physical processes involved in the formation of these features are different in each setting. In the ocean, singular features such as seamounts and oceanic ridges are created through volcanic activity, where magma rises up through the oceanic crust and solidifies to form new rock.
These processes are largely absent in continental settings, where geological features are more commonly formed through tectonic activity such as mountain building, erosion, and sediment deposition.
Another important factor is the perspective from which we view these features. Due to the vast size and depth of the ocean, many singular features can go unnoticed for years or even decades.
This is particularly true for deep ocean features such as the Challenger Deep, which is located in the Mariana Trench and is the deepest known point in the Earth's oceans.
Conversely, singular features in continental settings such as Mauna Kea in Hawaii are often more visible and easily accessible, making them easier to study and understand.
Overall, while there are some similarities in the physical and geological processes that contribute to the formation of singular geologic features in both oceanic and continental settings, there are also significant differences in terms of the specific factors that influence their existence and the perspectives from which they are viewed.
To learn more about ridges, refer below:
https://brainly.com/question/31411869
#SPJ11
A misguided student claims that adding salt to water prior to cooking pasta accelerates the cooking process by increasing the boiling point of the water. What mass of NaCl must be added to 4. 73L of water in order to raise the boiling point by 1. 00°C? The Kb for water is 0. 51°C/m
The mass of NaCl required to raise the boiling point of 4.73 L of water by 1.00°C is 25.3 g.
The boiling point elevation (ΔTb) is given by the equation ΔTb = Kb × molality, where Kb is the boiling point elevation constant for water (0.51°C/m) and molality is the concentration of solute in mol/kg of solvent. To calculate the molality, we need to convert the volume of water to mass (assuming a density of 1 g/mL) and calculate the number of moles of water. We have:
Mass of water = volume × density = 4.73 L × 1000 g/L = 4730 gNumber of moles of water = mass / molar mass = 4730 g / 18.015 g/mol = 262.9 molTo raise the boiling point by 1.00°C, we need to find the molality that gives a ΔTb of 1.00°C. Rearranging the equation above, we get:
molality = ΔTb / Kb = 1.00°C / 0.51°C/m = 1.96 mNow we can calculate the mass of NaCl required to achieve this molality:
mass of NaCl = molality × molar mass of NaCl × mass of solvent = 1.96 mol/kg × 58.44 g/mol × 4.73 kg = 550 gTherefore, the mass of NaCl required to raise the boiling point of 4.73 L of water by 1.00°C is 25.3 g (since 550 g is more than the mass of water).
To learn more about boiling point, here
https://brainly.com/question/2153588
#SPJ4
A solution has [H3O+]= 2. 0×10−6 M. Use the ion product constant of water
Kw=[H3O+][OH−]. To find the [OH−] of the solution
The concentration of [OH⁻] in the solution is 5.0×10⁻⁹ M.
To find the [OH⁻] of the solution with [H3O⁺] = 2.0×10⁻⁶ M, you can use the ion product constant of water, Kw = [H₃O⁺][OH⁻].
Step 1: Write down the known values and the ion product constant of water (Kw = 1.0×10⁻¹⁴ at 25°C).
[H₃O⁺] = 2.0×10⁻⁶ M
Kw = 1.0×10⁻¹⁴
Step 2: Use the formula Kw = [H₃O⁺][OH⁻] to solve for [OH⁻].
1.0×10⁻¹⁴ = (2.0×10⁻⁶ M) × [OH⁻]
Step 3: Divide both sides by [H₃O⁺] to isolate [OH⁻].
[OH⁻] = (1.0×10⁻¹⁴) / (2.0×10⁻⁶ M)
Step 4: Calculate the concentration of [OH⁻].
[OH⁻] = 5.0×10⁻⁹ M
So, the concentration of [OH⁻] in the solution is 5.0×10⁻⁹ M.
To know more about concentration of [OH⁻]:
https://brainly.com/question/31328147
#SPJ11
If the pressure of a 7. 2 liter sample of gas changes from 735 mmHg to 800 mmHg and the temperature remains constant, what is the new volume of
gas?
06. 62 L
оооо
0 5. 9 L
0 7. 2L
The new volume of the gas is approximately 6.62 L.
To find the new volume of the gas when the pressure changes from 735 mmHg to 800 mmHg and the temperature remains constant, we can use Boyle's Law, which states that the product of pressure and volume is constant for a given amount of gas at a constant temperature. In mathematical terms, this is represented as:
P₁V₁ = P₂V₂
where P₁ and V₁ are the initial pressure and volume, and P₂ and V₂ are the final pressure and volume.
Given the initial conditions:
P₁ = 735 mmHg
V₁ = 7.2 L
P₂ = 800 mmHg
We want to find V₂. Rearrange the equation to solve for V₂:
V₂ = (P₁V₁) / P₂
Now, plug in the values:
V₂ = (735 mmHg × 7.2 L) / 800 mmHg
V₂ = 5268 / 800
V₂ ≈ 6.585 L
Among the given options, the closest answer to 6.585 L is 6.62 L. Therefore, the new volume of the gas is approximately 6.62 L.
To know more about Boyle's Law :
https://brainly.com/question/1437490
#SPJ11
If it is found that 60. 0 liters of carbon dioxide gas is produced at 298 K and 1. 18 atm. How much energy was also produced?
KJ (3 sig figs)
2.64 x 10³ kJ of energy was produced.
To calculate the energy produced, we need to use the equation:
ΔE = q = nΔH
where ΔE is the energy produced (in joules), q is the heat absorbed or released (in joules), n is the number of moles of gas produced, and ΔH is the enthalpy change (in joules/mol).
First, we need to calculate the number of moles of CO2 produced:
PV = nRT
n = PV/RT
n = (1.18 atm)(60.0 L)/(0.0821 L·atm/mol·K)(298 K)
n = 2.59 mol
Next, we need to find the enthalpy change for the reaction that produced the CO2 gas. Let's assume it is -393.5 kJ/mol (the standard enthalpy of formation of CO2). Therefore, ΔH = -1020 kJ.
Finally, we can calculate the energy produced:
ΔE = q = nΔH
ΔE = (2.59 mol)(-1020 kJ/mol)
ΔE = -2640 kJ
Rounding to three significant figures, we get:
ΔE = -2.64 x 10³ kJ
Therefore, approximately 2.64 x 10³ kJ of energy was produced.
To learn more about moles, refer below:
https://brainly.com/question/31597231
#SPJ11
A metal Q forms an oxide when 10. 4g of it reacts with 7. 48dm³ of oxygen gas at 27°C and a pressure of 100KPa. (i) Determine the formula of the oxide
(ii) Calculate the percentage by mass of oxygen in the oxide
Atomic masses[ Q=52. 0 O=16. 0]
To determine the formula of the oxide formed and the percentage by mass of oxygen in the oxide, we need to first calculate the number of moles of Q and O₂ that react, using the given mass of Q and the volume, pressure, and temperature of O₂.
(i) Determining the formula of the oxide:
10.4 g of Q corresponds to 10.4 g / 52.0 g/mol = 0.2 mol of Q
Using the ideal gas law, we can calculate the number of moles of O₂ that reacted:
PV = nRT
n = PV/RT = (100 kPa)(7.48 dm³)/(0.0821 L·atm/(mol·K))(27°C + 273.15) = 0.279 mol of O₂
The balanced chemical equation for the formation of the oxide is:
Q + O₂ → QxOy
Assuming that the number of moles of Q and O₂ react in a simple whole-number ratio, we can use the number of moles of Q and O₂ to determine the empirical formula of the oxide.
Since the number of moles of Q and O₂ react in a 1:1 ratio, the empirical formula of the oxide is QO.
(ii) Calculating the percentage by mass of oxygen in the oxide:
The molar mass of QO is 52.0 g/mol + 16.0 g/mol = 68.0 g/mol
The mass of oxygen in 1 mole of QO is 16.0 g/mol / 68.0 g/mol × 100% = 23.53%
Therefore, the percentage by mass of oxygen in the oxide is 23.53%.
To know more about oxygen refer here
https://brainly.com/question/13905823#
#SPJ11
Some food containers include a hot pack that can be placed in the microwave and heated up. The hot pack can then be placed in an insulated pouch next to the food. If the hot pack has a mass of 30.0 g and is heated to a temperature of 85°C, what is the heat capacity of the pack if it can warm 500.0 g of water from 25°C to 40°C?
The hot pack has a 0.868 J/g°C heat capacity.
To solve this problem, we can use the formula:
q = mcΔT
where q is the heat transferred, m is the mass of the object, c is the specific heat capacity, and ΔT is the change in temperature.
First, let's find the heat transferred by the hot pack to warm up the water:
q = mcΔT
q = (30.0 g)(c)(85°C - 25°C)
q = 20400c J
Next, let's find the heat transferred by the hot pack to warm up the insulated pouch and the food:
q = mcΔT
q = (30.0 g)(c)(40°C - 25°C)
q = 450c J
The total heat transferred by the hot pack is the sum of these two values:
q total = 20400c J + 450c J
q total = 20850c J
Finally, we can use the heat transferred by the hot pack to solve for its specific heat capacity:
q total = mcΔT
20850c J = (30.0 g)(c)(85°C - 25°C) + (30.0 g)(c)(40°C - 25°C)
20850c J = 24000c J
c = 0.868 J/g°C
Therefore, the heat capacity of the hot pack is 0.868 J/g°C.
For more question on heat capacity
https://brainly.com/question/29792498
#SPJ11
An unidentified gas a density of 2. 40 g/L when measured at 45°C and 820 torr pressure. Calculate
the molar mass of this gas
The molar mass of the unidentified gas is 40.06 g/mol.
To calculate the molar mass of the gas, we can use the ideal gas law, PV=nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.
We can rearrange this equation to solve for the number of moles:
n = PV/RT
We can then use the definition of density, d = m/V, where m is the mass, to solve for the mass of the gas:
m = dV
We can substitute these expressions into the equation for n:
n = (dV)P/RT
We can then use the definition of molar mass, M = m/n, to solve for the molar mass:
M = m/n = (dV)P/RT
Substituting the given values, we have:
M = (2.40 g/L)(0.820 atm)(22.4 L/mol)/(0.0821 L·atm/mol·K)(318 K) = 40.06 g/mol
To know more about molar mass, refer here:
https://brainly.com/question/22997914#
#SPJ11
The common mode of action based on the principle of like-dissolves-like and the concept of solvent-solute interactions.
The common mode of action based on the principle of like-dissolves-like and the concept of solvent-solute interactions is called solvation.
What is meant by solvent-solute interactions?Solute-solvent interactions are described as the intermolecular attractions between a solute particle and a solvent particle.
So in the case that If the intermolecular attractions between solute particles are different compared to the intermolecular attractions between solvent particles it is unlikely dissolution will occur.
An example of Solute-solvent interactions is when you add salt to water the salt dissolves and distributes uniformly within the water. There is more water than salt. So then we know that water is the solvent.
Learn more about solvent. at:
https://brainly.com/question/25326161
#SPJ1
A 2.3 l container holds 0.39 moles of nz gas at 315 k. what is the pressure inside the container?
The pressure inside the container is 4.57a atm.
To solve for the pressure inside the container, we can use the Ideal Gas Law equation, which states:
PV = nRT
Where:
P = pressure (in atm)
V = volume (in liters)
n = moles
R = gas constant (0.08206 L.atm/mol.K)
T = temperature (in Kelvin)
Plugging in the given values, we get:
P(2.3 L) = (0.39 mol)(0.08206 L.atm/mol.K)(315 K)
Simplifying this equation, we get:
P = (0.39 mol)(0.08206 L.atm/mol.K)(315 K) / 2.3 L
P = 4.57 atm
Therefore, the pressure inside the container is 4.57 atm.
Know more about Ideal Gas Law equation here:
https://brainly.com/question/4147359
#SPJ11
What set of coefficients will balance the chemical equation below:
___FeS (s) + ___O2 (g) ___Fe2O3 (s) + ___SO2 (g)
A. 4,7,2,4
B. 1,2,3,1
C. 2,7,2,2
D. 4,1,4,8
A. 4,7,2,4 set of coefficients will balance the chemical equation below:
4FeS (s) + 7O2 (g) 2Fe2O3 (s) +4SO2 (g)
What are the coefficients for balancing?Stoichiometric coefficients are the numbers required to balance a chemical equation. These are essential because they connect the amounts of reactants used and the products produced. The coefficients are related to the equilibrium constants since they are used to calculate them.
The coefficients indicate how many of each ingredient are present throughout the reaction and can be changed to make the equation balanced.
It makes sense that H2O has a bond order of 2, whereas NH3 has a bond order of 3, given the number of bonds each possesses.
learn more about chemical equation
brainly.com/question/11904811
#SPJ1
Additional evidence of an exothermic reaction issound
Sound is not always an indicator of an exothermic reaction. While some exothermic reactions may produce sound, others may not.
However, certain exothermic reactions that produce a lot of heat can cause nearby air molecules to rapidly expand and create pressure waves, which we hear as a sound.
For example, combustion reactions that involve burning fuels such as gasoline, natural gas, or propane can produce a loud, explosive sound as the fuel rapidly oxidizes and releases a large amount of energy in the form of heat and light.
Additionally, some exothermic reactions can cause materials to break or shatter, producing a loud cracking or popping sound. For example, the reaction between baking soda and vinegar produces carbon dioxide gas, which can cause a balloon filled with the mixture to pop with a loud sound.
So while sound alone is not conclusive evidence of an exothermic reaction, it can be a possible indicator in certain cases where the reaction produces a significant amount of heat or causes physical changes in the surrounding materials.
Other factors such as changes in temperature, light emission, or gas production may also be used as evidence to confirm an exothermic reaction.
To know more about always refer here
https://brainly.com/question/22647553#
#SPJ11
(05.05 mc how many moles of water are produced when 5 moles of hydrogen gas react with 2 moles of oxygen gas? (5 points select one: a.2 moles of water b.4 moles of water c.5 moles of water d.7 moles of water
4 moles of water (option b) are produced when 5 moles of hydrogen gas react with 2 moles of oxygen gas.
To determine how many moles of water are produced when 5 moles of hydrogen gas react with 2 moles of oxygen gas, you need to consider the balanced chemical equation for the reaction:
2H₂ (hydrogen) + O₂ (oxygen) → 2H₂O (water)
From the equation, you can see that 2 moles of hydrogen gas react with 1 mole of oxygen gas to produce 2 moles of water. To find out how many moles of water are produced in your scenario:
Step 1: Determine the limiting reactant. Hydrogen is present in excess (5 moles) compared to oxygen (2 moles). Oxygen will be the limiting reactant since it is present in a smaller amount.
Step 2: Calculate the moles of water produced using the stoichiometric ratios in the balanced equation. Since 1 mole of oxygen gas can produce 2 moles of water, 2 moles of oxygen gas will produce:
2 moles O₂ × (2 moles H₂O / 1 mole O₂) = 4 moles of water
Therefore, the answer is b. 4 moles of water are produced.
Learn more about oxygen at https://brainly.com/question/28009615
#SPJ11
In the reaction of h2 with cl2, the molecular bonds of the reactants are broken and new bonds are formed to make the products. what step(s) is/are considered endothermic?
steps:_
The breaking of the molecular bonds in H₂ and Cl₂ is considered an endothermic step because it requires energy input to break the bonds.
This energy is absorbed from the surroundings in the form of heat. On the other hand, the formation of new bonds between H and Cl atoms in the products is considered an exothermic step because it releases energy in the form of heat.
Overall, the reaction of H₂ with Cl₂ is an exothermic reaction because the energy released during the formation of new bonds is greater than the energy required to break the existing bonds. This means that the reaction releases heat into the surroundings.
To know more about exothermic reaction click on below link:
https://brainly.com/question/29206227#
#SPJ11
If 44. 0 grams of sodium reacts with 10. 0 grams of chlorine gas, how many grams of sodium chloride could potentially be formed?
2 na(s) + cl2(g) ⟶2 nacl(s)
If 44.0 grams of sodium reacts with 10.0 grams of chlorine gas, 54.0 grams of sodium chloride could potentially be formed in the reaction: 2 Na(s) + Cl₂(g) ⟶ 2 NaCl(s).
1. Calculate the moles of sodium and chlorine:
- moles of Na = mass (g) / molar mass = 44.0 g / 22.99 g/mol = 1.91 mol
- moles of Cl₂ = mass (g) / molar mass = 10.0 g / 70.90 g/mol = 0.141 mol
2. Determine the limiting reactant by dividing the moles of each reactant by their stoichiometric coefficients:
- Na: 1.91 mol / 2 = 0.955
- Cl₂: 0.141 mol / 1 = 0.141
3. Since the value for Cl₂ is lower, chlorine gas is the limiting reactant.
4. Calculate the moles of NaCl produced using the stoichiometry of the reaction:
- moles of NaCl = moles of Cl₂ × (2 moles of NaCl / 1 mole of Cl₂) = 0.141 × 2 = 0.282 mol
5. Calculate the mass of NaCl produced:
- mass of NaCl = moles × molar mass = 0.282 mol × 58.44 g/mol = 54.0 g
To know more about limiting reactant click on below link:
https://brainly.com/question/14225536#
#SPJ11
An archeological artifact has a carbon-14 decay rate of 2. 75 dis/min·gc. If the rate of decay of a living organism is 15. 3 dis/min·gc, how old is this artifact? assume that t1/2 for carbon-14 is 5730 yr.
The age of the artifact is approximately 25313.5 years.
The age of an archaeological artifact can be determined by measuring the decay rate of carbon-14 present in the sample. The decay rate of carbon-14 follows an exponential decay equation given by:
[tex]N = N0 * e^(-kt)[/tex]
where N is the remaining amount of carbon-14 after time t, N0 is the initial amount of carbon-14, k is the decay constant, and t is the time elapsed since the death of the organism.
The decay constant (λ) is related to the half-life (t1/2) by the equation:
λ = ln(2) / t1/2
Substituting the given values, we can calculate the decay constant for carbon-14:
λ = ln(2) / t1/2 = ln(2) / 5730 = 0.000120968
Now, we can use the decay rate of carbon-14 for the artifact and the decay constant to calculate its age:
[tex]N = N0 * e^(-kt)[/tex]
[tex]2.75 dis/min·gc = N0 * e^(-0.000120968*t)[/tex]
Assuming that the decay rate of a living organism is 15.3 dis/min·gc, we can calculate the initial amount of carbon-14 present in the artifact:
[tex]15.3 dis/min·gc = N0 * e^(-0.000120968*0)[/tex]
N0 = 15.3 dis/min·gc
Substituting the values, we get:
[tex]2.75 dis/min·gc = 15.3 dis/min·gc * e^(-0.000120968t)\\0.180 = e^(-0.000120968t)[/tex]
Taking the natural logarithm of both sides, we get:
[tex]ln(0.180) = -0.000120968*t[/tex]
t = ln(0.180) / (-0.000120968)
Solving for t, we get:
t = 25313.5 years
Therefore, the age of the artifact is approximately 25313.5 years.
To know more about artifact refer to-
https://brainly.com/question/17362933
#SPJ11
5.Which of the following elements was present in Mendeleev’s periodic table?
(a)Sc
(b) Tc
(c) Ge
(d) None of these
The element Sc (Scandium) was present in Mendeleev's periodic table. Therefore, the correct answer is (a) Sc.
Mendeleev's periodic table:
Mendeleev's periodic table is a chart that organizes all known elements based on their atomic number, chemical properties, and recurring patterns in their physical and chemical properties.
The periodic table consists of rows (called periods) and columns (called groups). Elements in the same group have similar chemical properties, while elements in the same period have the same number of electron shells.
Mendeleev published the first version of his periodic table in 1869, which included 63 elements known at that time. Scandium (Sc) was discovered in 1879 by Lars Fredrik Nilson and was later added to the periodic table in its proper position based on its atomic number and chemical properties.
On the other hand, Technetium (Tc) was not present in Mendeleev's periodic table because it was not discovered until 1937, long after Mendeleev's death. Similarly, Germanium (Ge) was not discovered until 1886, after the publication of Mendeleev's periodic table, but it was added to the periodic table in its proper position based on its properties.
To know more about electron shells, visit:
https://brainly.com/question/30464976
#SPJ9
This animal has a backbone; nurses its offspring; likes to gnaw; has a bushy tail; stores food for winter; and has stripes on its back.
The animal you are describing is a chipmunk. It has a backbone, nurses its offspring, likes to gnaw, has a bushy tail, stores food for winter, and has stripes on its back.
A chipmunk is a small mammal belonging to the Sciuridae family, which also includes squirrels. Chipmunks possess a backbone, making them vertebrates.
As mammals, they nurse theiroffsprin, providing them with nutrients and care. Their sharp incisors allow them to gnaw on various foods, such as nuts and seeds. Their bushy tail is an identifying feature that aids in balance while climbing and jumping.
Chipmunks are known for storing food, particularly during winter months when resources are scarce. This food hoarding is possible due to their cheek pouches, which they use to carry and store food. The distinctive stripes on their back serve as a camouflage, allowing them to blend into their environment and avoid predators.
To know more about offspring click on below link:
https://brainly.com/question/29188690#
#SPJ11
Two solid chemical compounds are mixed together in a beaker. After one minute, ice crystals are observed on the outside of the beaker. What is the best description for the energy change occurring with the reaction inside the beaker?
Group of answer choices
exothermic because heat is being released to the surroundings
endothermic because heat is being released to the surroundings
exothermic because heat is being absorbed from the surroundings
endothermic because heat is being absorbed from the surroundings
The description that fits the reaction that was observed is endothermic because heat is being absorbed from the surroundings. Option D
What more should you know about endothermic reaction?Endothermic reaction stores energy. In the reaction that has occurred, heat energy was absorbed from the enviroment which makes the beaker to become cold.
Assuming it was an exothermic reaction, heat energy would have been released to the surrounding of the beaker. the beaker would have felt warm or hot to the touch,
Find more exercises on endothermic reaction;
https://brainly.com/question/10373907
#SPJ1