Answer:
Sound waves cause particles to vibrate perpendicular to the direction of the wave.
A 1.3 kg mass is attached to the left end of a meter stick. The meter stick is then balanced on a fulcrum as shown. If the mass of the meter stick is 0.2 kg and its center of mass is located at its geometric center, how far to the left of the stick's center of mass (‘d' in the figure) should the fulcrum be placed to balance the meter stick? Provide your answer in centimeters.
The fulcrum to balance the meter stick should be placed 8.33 cm to the left of the center of mass of the meter stick, under the condition that the mass of the meter stick is 0.2 kg and its center of mass is located at its geometric center.
In order to balance the meter stick with the 1.3 kg mass placed to the left end, we have to evaluate the distance ‘d' from the center of mass of the meter stick to the fulcrum.
The given center of mass of the meter stick is found at its geometric center which is at 50 cm from either end of the stick. Then the mass of the meter stick is 0.2 kg.
We can apply the principle of moments to evaluate this problem. The principle of moments says that for an object in equilibrium, the summation of the clockwise moments about any point must be equivalent to the sum of the anticlockwise moments about that point.
Let us consider that moments about the fulcrum. The clockwise moment because of the weight of the 1.3 kg mass and is stated by (1.3 kg) x (d cm). The anticlockwise moment is because of the weight of the meter stick and is given by (0.2 kg) x (50 - d cm). Since the meter stick is balanced, these two moments should be equal.
(1.3 kg) x (d cm)
= (0.2 kg) x (50 - d cm)
Evaluating for‘d’,
d = 8.33 cm
Hence, the fulcrum should be placed 8.33 cm to the left of the center of mass of the meter stick.
To learn more about principle of moments
https://brainly.com/question/26117248
#SPJ1
A proton, moving with a velocity of viî, collides elastically with another proton that is initially at rest. If the speed of the initially moving proton is 1.90 times the speed of the initially at rest proton, find the following.
(a) the speed of each proton after the collision in terms of vi
(b) the direction of the velocity vectors after the collision
Answer:
We can approach this problem using the conservation of momentum and the conservation of kinetic energy.
Conservation of momentum:
The momentum before the collision is given by:
p1 = m1v1 = m1viî
where m1 is the mass of each proton (which we assume to be the same) and v1 is the velocity of the initially moving proton.
The momentum after the collision is given by:
p2 = m1v1' + m1v2'
where v1' and v2' are the velocities of the two protons after the collision.
Since the collision is elastic, the total momentum is conserved:
p1 = p2
m1viî = m1v1' + m1v2'
We can simplify this equation by dividing both sides by m1:
viî = v1' + v2'
Conservation of kinetic energy:
The kinetic energy before the collision is given by:
K1 = (1/2)m1 We need the value of the velocity v1, which is not given in the problem statement.
Question 11 of 25
In the circuit below, resistors R₁ and R₂ are in parallel. What is the equivalent
1
1
resistance? (R₁ = 30 22,R₂ = 20 2) (
A
+A)
Ptot R₁
S₁
S₂
R₁
S₂ S
ww
R₂
1
R₂₂k
Answer:
60 ohms
Explanation:
To find the equivalent resistance of two resistors R₁ and R₂ in parallel, we can use the formula:
1/Req = 1/R₁ + 1/R₂
where Req is the equivalent resistance.
Substituting the values given, we get:
1/Req = 1/30 + 1/20
Simplifying, we get:
1/Req = 1/60
Multiplying both sides by Req, we get:
Req = 60 ohms
Therefore, the equivalent resistance of the two resistors R₁ and R₂ in parallel is 60 ohms.
A satellite is in orbit around a planet. The orbital radius is 34 km and the gravitational acceleration at that height is 3.3 ms-2 . What is the satellite's orbital speed in m/s?
The orbital speed of the satellite orbiting around a planet of radius 34 Km is found to be 2.59 km/s.
To find the orbital speed (v) of the satellite, we can use the formula,
v = √(GM/r), gravitational constant (6.674 x 10⁻¹¹ N(m/kg)²) is G, mass of the planet is M, and orbital radius of the satellite is r. To calculate M, we can use the formula,
g = GM/r², rearranging this formula, we get,
M = gr²/G
Substituting the values, we get,
M = 3.3(34,000)²/(6.674 x 10⁻¹¹)
M = 6.06 x 10²⁰ kg
Now, substituting the values of G, M, and r into the formula for orbital speed, we get,
v = √((6.674 x 10⁻¹¹)(6.06 x 10²⁰)/(34,000))
v = 2.59 x 10³ m/s
Therefore, the satellite's orbital speed is approximately 2.59 km/s.
To know more about orbital speed, visit,
https://brainly.com/question/7260440
#SPJ1
13. List the general strengths and weaknesses of epidemiology for providing an answer to Mary Beth’s question.
14. List the specific strengths and weaknesses of this study.
15. List the general strengths and weaknesses of toxicology for providing an answer to Mary Beth’s question.
The general strengths of epidemiology for providing an answer to Mary Beth’s question.
epidemiology can study a large populationepidemiology can identify patterns and trends in health and diseaseepidemiology can be used to study different diseases and health conditionsThe general weaknesses of epidemiology for providing an answer to Mary Beth’s question:
epidemiology may not provide a definitive answer or explanationepidemiology results may be affected by biases and confounding variablesThe Specific strengths of a study:
Big sample sizeLengthy follow-up periodThe specific weaknesses of a study are :
Use of self-recorded data, which may be inaccurate or biasedBiased selection due to non-random samplingWhat is epidemiology?Epidemiology is described as the study and analysis of the distribution, patterns and determinants of health and disease conditions in a defined population.
The main objective of epidemiology has been said is to find out what causes different health outcomes in different groups of people.
Learn more about epidemiology at:
https://brainly.com/question/29609224
#SPJ1
The softest sound a human ear can hear is at 0 dB (Io = 10-12 W/m2). Sounds above 130 dB cause pain. A particular student's eardrum has an area of A = 51 mm2. What is the most power, in watts, the ear can receive before the listener feels pain?
Im so confused on how to even start with this problem, my main question is how sound and power are related.
Answer:
Sound and power are related through intensity, which is the amount of power per unit area. The intensity of a sound wave is proportional to the square of its amplitude, which is a measure of how far the wave oscillates from its equilibrium position.
To solve this problem, you can use the formula for sound intensity:
I = P/A
where I is the intensity of the sound wave in watts per square meter (W/m^2), P is the power of the sound wave in watts (W), and A is the area of the eardrum in square meters (m^2).
You are given that the softest sound a human ear can hear is 0 dB, which corresponds to an intensity of 10^-12 W/m^2. You are also given that sounds above 130 dB cause pain. To find the maximum power the ear can receive before the listener feels pain, you can rearrange the formula for intensity to solve for power:
P = AI
where A is the area of the eardrum in square meters.
Substituting the given values, you get:
P = (51 x 10^-6 m^2)(10^-12 W/m^2 x 10^(130/10))
Simplifying this expression, you get:
P = 1.8 x 10^-3 W
Therefore, the most power the ear can receive before the listener feels pain is 1.8 x 10^-3 watts.
3.
Engineers use
O electrical conductors
resistance
to prevent electricity from flowing to the wrong place.
electrical insulators
semiconductors
Engineers use electrical insulators to prevent electricity from flowing to the wrong place.
What are electrical insulators?Insulators are materials that do not conduct electricity easily and are used to separate electrical conductors to prevent current leakage or short circuits. Common insulating materials include rubber, plastic, glass, and ceramic. By using insulators, engineers can ensure that electrical energy is directed along the intended path and that electrical equipment operates safely and efficiently.
. Insulators are commonly used in a variety of applications, including electrical wiring, power transmission and distribution systems, electronic devices, and high-voltage equipment. Common insulating materials include rubber, plastic, glass, ceramic, and air. The choice of insulating material depends on various factors such as the required level of insulation, the operating temperature, and the environment in which the insulator will be used.
Learn more about insulators at:
https://brainly.com/question/11845176
#SPJ1
An electric field of 2250 N/C is produced by a charge of 4.82 x 10^-11 C. For this field strength, what is the distance to the charge? (Kc = 8.99 x 10^9 NM^2 / C^2 )
Answer:
1.77 cm
Explanation:
The electric field strength produced by a point charge can be calculated using the equation:
E = k * Q / r^2
where E is the electric field strength, k is Coulomb's constant (k = 8.99 x 10^9 N m^2 / C^2), Q is the charge, and r is the distance between the charge and the point where the field is being measured.
Rearranging this equation to solve for r, we get:
r = sqrt(k * Q / E)
Substituting the given values, we get:
r = sqrt((8.99 x 10^9 N m^2 / C^2) * (4.82 x 10^-11 C) / (2250 N/C))
r = 0.0177 m or 1.77 cm
Therefore, the distance to the charge is 1.77 cm for this electric field strength.
state the energy transfer that takes place as the ball changes shape during the contact between the racquet and the ball
When the ball hits the racquet, it gets squished, and it gains elastic energy, since it is compressed.
A boy of mass 60 kg and a girl of mass 40 kg are together and at rest on a frozen pond and push each other apart. The girl moves in a negative direction with a speed of 3 m/s. What must be the total final momentum of the boy and girl combined?
A. 0 kgm/s
B. -120 kgm/s
C. 120 kgm/s
D. -100 kgm/s
Answer:
Explanation:
The total initial momentum of the system is zero since the boy and girl are at rest initially. According to the law of conservation of momentum, the total final momentum of the system must also be zero.
If the girl moves in a negative direction with a speed of 3 m/s, then she gains a momentum of -3 x 40 = -120 kgm/s in the negative direction. To conserve momentum, the boy must gain a momentum of +120 kgm/s in the positive direction, so that the total momentum of the system remains zero.
Therefore, the total final momentum of the boy and girl combined is 120 kgm/s in the positive direction. The answer is C. 120 kgm/s.
Answer:
The girl acquires a velocity of -3 x 40 = -120 kgm/s in the negative direction if she goes with a speed of 3 m/s in the opposite direction. The boy must acquire a momentum of +120 kgm/s in the positive direction to preserve and keep the system's overall momentum at zero.
Explanation:
The answer is option D
Brainliest please :)
graph
shows a variety of moving objects and how their distance is related to time what do these objects have in common
What is common among all the graphs is that they all show an object that is moving.
What is a graph?In the distance time graph, we have the distance on the vertical axis and we have the time on the horizontal axis and the shape of the plots may differ depending on the nature of the motion of the objects.
Graphs of distance vs time help us to examine motion by showing how an object has moved over time. All objects shown on a distance vs. time graph are shifting positions over time, regardless of the graph's specific shape or slope, and the graph reveals information about the direction and speed of their motion.
Learn more about graphs:https://brainly.com/question/848468
#SPJ1
Please answer the correct question and I will give you 50 points
1) Consider a ring, sphere and solid cyclinder all with the same mass. They are all held at the top of an inclined plane which is at 20° to the horizontal. The top of the inclined plane is 1 m high. The shapes are released simultaneously and allowed to roll down the inclined plane. Assume the objects roll without slipping and that they are all made from the same material. Assume the coefficient of static friction between the objects and plane to be 0.3.
A ) calculate the tangential (linear) Velocity of each shapes-
B) determine the linear acceleration(a)
C) which shapes have the greater moment of inertia ?
D) How long will it take each shape to reach the bottom of the Slope ?
E) workout what order they would get to the bottom of the Slope.
A) The tangential (linear) velocity of each shape is:
For the ring: v = rω = 2.41 m/s.
For the sphere: v = rω = 1.57 m/s.
For the solid cylinder: v = rω = 2.41 m/s.
B) The linear acceleration of each shape is:
For the ring: α = 2gsinθ/(3r(1 + 0.3) + 2R) = 1.191 m/s^2.
For the sphere: α = 2gsinθ/(5r(1 + 0.3)) = 1.176 m/s^2.
For the solid cylinder: α = 2gsinθ/(3r(1 + 0.3) + 2R) = 1.228 m/s^2.
C) The solid cylinder has the greatest moment of inertia.
D) The time taken for each shape to reach the bottom of the slope is:
For the ring: t = 0.576 s.
For the sphere: t = 0.197 s.
For the solid cylinder: t = 0.576 s.
E) The sphere will reach the bottom of the slope first, followed by the ring and the solid cylinder.
The short-term effects of marijuana can include __________.
Answer:
Explanation:
Increased heart rate
You are a visitor aboard the New International Space Station, which is in a circular orbit around the Earth with an orbital speed of o=2.45 km/s
. The station is equipped with a high velocity projectile launcher, which can be used to launch small projectiles in various directions at high speeds. Most of the time, the projectiles either enter new orbits around the Earth or eventually fall down and hit the Earth. However, as you know from your physics courses at the Academy, projectiles launched with a sufficiently great initial speed can travel away from the Earth indefinitely, always slowing down but never falling back to Earth.
With what minimum total speed, relative to the Earth, would projectiles need to be launched from the station in order to "escape" in this way? For reference, recall that the radius of the Earth is E=6370000 m
, the mass of the Earth is E=5.98×1024 kg
, the acceleration due to gravity on the surface of the Earth is =9.81 m/s2
and the universal gravitational constant is =6.67×10−11 N·m2/kg2
.
Answer:
To calculate the minimum total speed required for the projectile to escape the Earth's gravitational pull, we can use the equation for escape velocity:
v_escape = sqrt(2GM/R)
where G is the gravitational constant, M is the mass of the Earth, and R is the radius of the Earth.
Plugging in the given values, we get:
v_escape = sqrt(26.67e-115.98e24/6370000)
v_escape = 11186.4 m/s
This is the minimum total speed required for the projectile to escape the Earth's gravitational pull. In order to achieve this speed, the projectile would need to be launched with a velocity of 11186.4 m/s relative to the Earth.
Explanation:
creation
Design a device to minimize impact from a collision.
Design a device to convert one form of energy to another.
In 2-3 paragraphs explain your design, the materials that would be used to construct it, its function, and the relative efficiency of your design compared to something that already exists and performs a similar function
The device I would design to minimize impact from a collision would be a shock absorber made from a combination of rubber and metal. The device would be installed between the two colliding objects, and its function would be to absorb and dissipate the energy of the collision, thereby reducing the impact forces on the objects.
CONSTRUCTION:
Compared to existing shock-absorbing devices such as airbags and crumple zones, this design would be more efficient in reducing the impact forces on the colliding objects. Unlike airbags and crumple zones, which are designed to absorb the impact forces by deforming, the shock absorber would absorb the impact energy through compression and dissipation of the energy as heat.
Designing a device to convert one form of energy to another:The device I would design to convert one form of energy to another would be a piezoelectric generator. The function of this device would be to convert mechanical energy into electrical energy through the use of piezoelectric materials.The piezoelectric generator would consist of a piezoelectric material such as quartz or lead zirconate titanate (PZT) sandwiched between two metal plates. When mechanical stress is applied to the piezoelectric material, it generates an electrical voltage across the metal plates.Compared to existing devices such as generators and batteries, the piezoelectric generator would be more efficient in converting mechanical energy into electrical energy. This is because the piezoelectric effect is a direct conversion of mechanical energy into electrical energy, without the need for any intermediate steps such as the conversion of mechanical energy into rotational energy in a generator. Additionally, the piezoelectric generator would be smaller and more lightweight than traditional generators, making it ideal for use in portable electronic devices.
A vehicle is being planned that is driven by a flywheel engine. It has to run for at least 30 minutes and develop a steady power of 500 W.
Answer:
To meet the requirements of running for at least 30 minutes and developing a steady power of 500W, the flywheel engine needs to have sufficient energy storage capacity and be capable of delivering a steady power output.
Assuming that the flywheel engine is 100% efficient (i.e., no energy losses due to friction, air resistance, or other factors), the energy storage capacity required can be calculated as follows:
Energy storage capacity = Power x Time
= 500W x 30min
= 15,000 watt-minutes or 250 watt-hours
This means that the flywheel engine needs to be capable of storing at least 250 watt-hours of mechanical energy.
Brainliest for answer!! How does the light spectrum measured for a nearby star compare to the light spectrum of a distant galaxy that is moving rapidly away from the observer? Explain what causes the differences between the two spectra. Answer in 3-5 sentences please.
Answer:
The light spectrum measured for a nearby star can be used as a benchmark for more distant stars because two stars with identical spectra have the same intrinsic luminosity. Spectroscopy can be applied to light from a distant galaxy, but the dark lines in the solar spectrum give a unique pattern that can be used to identify the elements present in the star. The light spectrum of a distant galaxy that is moving rapidly away from the observer will be shifted towards the red end of the spectrum due to the Doppler effect, which causes the wavelengths of light to stretch out as the object moves away from the observer.
Why is compound interest more advantageous than simple interest
Compound interest is more advantageous than simple interest because it allows for the accumulation of interest on both the principal amount and the interest earned over time. In simple interest, interest is only earned on the principal amount, while in compound interest, the interest earned is added to the principal amount and then interest is earned on the new, higher amount. This leads to a compounding effect where the interest earned increases over time, resulting in a larger total return on investment. Additionally, compound interest is commonly used for long-term investments such as retirement funds and savings accounts, where the power of compounding can significantly increase the final amount earned.
Two children setup a “telephone” by placing a long, slender aluminum (Y = 6.9 × 1010 N/m2) rod that has a length of 6.1-m between their two houses. To communicate, a child taps a coded message on one end. How long do the sound waves take to reach the other end? Note: the density of aluminum is 2700 kg/m3.
The time takes is 1.19 ms for the sound waves to travel the length of the aluminum rod between the two houses.
The speed of sound in aluminum can be determined utilizing the condition
v = sqrt(Y/ρ),
where Y is the Youthful's modulus and ρ is the thickness of the material. Connecting the qualities for aluminum, we get
v = [tex]sqrt(6.9x10^10 N/m^2/2700 kg/m^3) = 5110 m/s[/tex].
The time it takes for the sound waves to venture to every part of the length of the aluminum pole can be determined utilizing the condition
t = d/v,
where d is the distance and v is the speed of sound. Connecting the qualities, we get
t = 6.1 m/5110 m/s = 0.00119 s or 1.19 ms.
Subsequently, it takes 1.19 ms for the sound waves to venture to every part of the length of the aluminum bar between the two houses.
To learn more about time of sound wave, refer:
https://brainly.com/question/14615403
#SPJ1
b) A motorcycle moving at 75 mph starts to slow down at a constant rate of 0.25 m/s^2 for 15 seconds. Find its final velocity (in both m/s and mph) and the total distance (in meters) that it traveled during this 15 s timeframe.
The final velocity of the motorcycle is
29.78 m/s (66.7083 mph),the total distance traveled during the 15-second timeframe is
516.98 meters.How to find the final velocityConvert the initial velocity from mph to m/s:
75 mph = 75 x 0.44704 m/s = 33.528 m/s
Using vf = vi + at
where
vf is the final velocity,
vi is the initial velocity
a is the acceleration, and
t is the time interval.
Plugging in the given values, we get:
vf = 33.528 m/s - (0.25 m/s^2)(15 s) = 32.59 m/s
convert the final velocity back to mph
32.59 m/s = 32.59 x 2.237 mph/m = 72.9 mph
distance traveled, d
d = vi*t + (1/2)at^2
d = 32.59 m/s * 15 s + (1/2)(-0.25 m/s^2)(15 s)^2
d = 516.98 m
Learn more about final velocity at
https://brainly.com/question/25905661
#SPJ1
What is inertia of motion explain one example?
THE INABILITY OF A BODY TO CHANGE ITS STATE OF MOTION BY ITSELF
example : a passenger tends to fall forward when breaks are applied in a busThe tendency of an item to resist a change in its state of motion is referred to as inertia. It specifically refers to an object's resistance to any change in velocity, whether that change be in speed or direction.
What is Inertia ?When you are riding in a car and the driver abruptly stops, you are experiencing inertia of motion. Because of inertia, your body wants to continue going forward at the same pace and in the same direction as before the brakes were applied. You will lean forward as a result, and if you are not wearing a seatbelt, you may be flung forward. Similarly, while the automobile speeds, your body tries to remain at rest owing to inertia, causing you to be motionless. Despite being widely accepted, Aristotle's theory of motion was challenged by prominent philosophers multiple times over the course of roughly two thousand years. For instance, Lucretius claimed that mobility rather than stasis (stagnation) was the "default state" of the matter (following, presumably, Epicurus).
To know more about Inertia :
https://brainly.com/question/3268780
#SPJ5.
Toy cars of different masses accelerate as they move down a ramp as shown in the figure. A motion sensor is used to measure the speed of each car. It is found that all of the cars have the same speed at the bottom of the ramp. This graph shows how the mass of the car affects the car’s kinetic energy at the bottom of the ramp. Based on the graph, describe the relationship between the mass and the kinetic energy of the car, and then predict, in joules the kinetic energy of a car with a mass of 80 grams.
The Kinetic energy of the car with a mass of 80 grams is 0.40 joules
How do i determine the kinetic energy?From the graph given, we can see that the as the mass increase, the kinetic energy also increase. Thus, we can say that the kinetic energy and mass of the car are in direct proportionality.
Now, we shall obtain the velocity of the car. Details below:
Kinetic energy (KE) = 0.1 JMass of (m) = 20 g = 20 / 1000 = 0.02 KgVelocity (v) = ?KE = ½mv²
0.1 = ½ × 0.02 × v²
0.1 = 0.01 × v²
Divide both side by 0.01
v² = 0.1 / 0.01
Take the square root of both side
v = √(0.1 / 0.01)
v = 3.16 m/s
Finally, we shall determine the kinetic energy of the car of mass 80 grams. Details below:
Mass (m) = 80 g = 80 / 1000 = 0.08 KgVelocity (v) = 3.16 m/sKinetic energy (KE) =?KE = ½mv²
KE = ½ × 0.08 × 3.16²
Kinetic energy = 0.40 joules
Learn more about kinetic energy:
https://brainly.com/question/25959744
#SPJ1
The 2001 World Trade Center attacks fall under which category of terrorism?
foreign-sponsored terrorism on U.S. soil
domestic-sponsored terrorism on U.S. soil
cyberwarfare and domestic terrorism
terrorism abroad that affects U.S. citizens
The 2001 World Trade Center attacks fall under which category of terrorism (a).foreign-sponsored terrorism on U.S. soil is correct option.
The 2001 World Trade Center attacks are generally considered to be an example of foreign-sponsored terrorism on U.S. soil. The attacks were carried out by a terrorist organization based in Afghanistan called Al-Qaeda, which was led by Osama bin Laden. The attackers were primarily from Saudi Arabia, but they received training and support from Al-Qaeda operatives based in Afghanistan.
Therefore, the correct option is (a).
To know more about terrorism
https://brainly.com/question/29830276
#SPJ1
state in terms of m, u and v ,the change of momentum of the object
The change in momentum of the object in terms of its mass, initial velocity, and final velocity is 5 kg m/s.
The change in momentum of an object can be calculated using the formula:
Δp = m * (v - u)
In this case, the mass of the object is 0.5 kg, the initial velocity (u) is 0 m/s, and the final velocity (v) is 10 m/s after 3 seconds of uniform acceleration.
Substituting these values into the formula gives:
Δp = 0.5 kg * (10 m/s - 0 m/s)
Δp = 5 kg m/s
Therefore, the change in momentum of the object in terms of its mass, initial velocity, and final velocity is 5 kg m/s.
To know more about momentum, here
brainly.com/question/30487676
#SPJ1
--The complete Question is, A 0.5 kg object is initially at rest. It then accelerates uniformly for 3 seconds and reaches a velocity of 10 m/s. Calculate the change in momentum of the object in terms of its mass (m), initial velocity (u), and final velocity (v).--
1. Choose one from the following countries:
o United States
o United Kingdom
o Australia
o Nepal
o Russia
o Spain
o India
2. Then make research of some laws supporting sexuality and gender in your
chosen country.
uk
because they have a Sexuality law
The figure below shows electrons moving along an electric current towards and away from the light bulb.
Electrons traveling along an electric current. Arrow under electrons points right and left both towards and away from the light bulb.
Does this figure show a direct or alternating current? Explain your response.
Based on the information provided, it is likely that the figure shows an alternating current (AC). The arrows under the electrons pointing right and left, both towards and away from the light bulb, indicate that the direction of the electron flow is changing periodically. This is a characteristic of alternating current, where the flow of electric charge reverses direction periodically, typically in a sinusoidal manner.
In an AC circuit, the voltage also changes direction periodically, which is consistent with the changing direction of the electron flow shown in the figure.
In an alternating current, the flow of electrons periodically reverses direction, causing the current to switch between positive and negative values. This is different from direct current (DC), where electrons flow in a single, constant direction.
For more questions on: current
https://brainly.com/question/1100341
#SPJ11
5) Find the electric current of this circuit:
( ) 5 A
( ) 8.5 A
( ) 3 A
( ) 10 A
The electric current in the circuit below is 3 A And the right option is C. 3A.
What is electric current?
Electric current is the rate of flow of charge in a circuit.
To calculate the electric current in the circuit below, we use the formula:
Formula:
I = V/R'.....................Equation 1Where:
I = Electric currentV = VoltageR' = Effective resistanceFrom the question,
Given:
V = 285 VR' = (20//20)+25+25+15R' = (20/2)+25+25+15+20R' = 10+25+25+15R' = 95 ohmsSubstitute these values into equation 1
I = 285/95I = 3 AHence, the right option is C. 3A
Learn more about electric current here: https://brainly.com/question/24858512
#SPJ1
78. A rocket takes off from Earth and reaches a speed of 100 m/s in 10.0 s. If the exhaust
speed is 1500 m/s and the mass of fuel burned is 100 kg, what was the initial mass of the rocket?
Answer:
5866.9 kg
Explanation:
We can use the conservation of momentum to solve this problem. The momentum of the rocket and fuel system is conserved, so:
Initial momentum = Final momentum
The initial momentum of the system is zero since the rocket is at rest initially. The final momentum is the momentum of the rocket after burning the fuel. We can find the final momentum using the rocket equation:
Δv = ve * ln(m0 / mf)
where Δv is the change in velocity (100 m/s), ve is the exhaust speed (1500 m/s), m0 is the initial mass of the rocket and fuel system (what we want to find), and mf is the final mass of the rocket and fuel system (m0 - 100 kg).
Solving for m0, we get:
m0 = mf * exp(Δv / ve) = (m0 - 100 kg) * exp(100 / 1500)
Simplifying this equation, we get:
m0 = 100 kg / (1 - exp(100 / 1500))
m0 = 5866.9 kg (rounded to four significant figures)
Therefore, the initial mass of the rocket and fuel system was approximately 5866.9 kg.
Which of the following is not among the uses of dimensional analysis? (a) determination of the Numerical constant (b) to convert one system of unit to another (c) to change the units of derived quantities (d) to test the correctness of an equation
To convert one system of unit to another of derived quantities is not a use of dimensional analysis.
What is dimensional analysis?Checking for consistency in the dimensions on both sides of an equation entails looking at the dimensions of the physical quantities involved in a problem, such as length, mass, time, electric charge, and temperature.
The core tenet of dimensional analysis is that physical quantities, such as length, mass, and time, may be described in terms of their basic dimensions.
Learn more about dimensions:https://brainly.com/question/1769579
#SPJ1
All of the options listed are included in the uses of dimensional analysis.
What is dimensional analysis?Dimensional analysis is a powerful tool used in physics to:
check the correctness of equations derive new equationsconvert units from one system to anotherdetermine numerical constants that relate physical quantities.The dimensional analysis involves analyzing the dimensions of physical quantities and using them to establish relationships between them.
By using the principles of dimensional analysis, we can simplify complex physical problems and gain insights into the behavior of physical systems.
More on dimensional analysis can be found here: https://brainly.com/question/13156854
#SPJ1
A car travels 200 km in the first 2.5 hour then stop for half hour then travels the final speed of 200 km in 2 hours find the average speed of a car
A car travels 200 km in the first 2.5 hour then stop for half hour then travels the final speed of 200 km in 2 hours. The average speed of the car is 80 km/hour.
To find the average speed of the car, we need to calculate the total distance traveled and the total time taken.
In the first 2.5 hours, the car travels 200 km.
Then, it stops for half an hour.
After that, the car travels another 200 km in 2 hours.
So the total distance traveled is 200 km + 200 km = 400 km.
The total time taken is 2.5 hours + 0.5 hours + 2 hours = 5 hours.
Therefore, the average speed of the car is:
Average speed = total distance / total time
= 400 km / 5 hours
= 80 km/hour.
So the average speed of the car is 80 km/hour.
For more such questions on average speed, click on:
https://brainly.com/question/6504879
#SPJ11