100 POINTS!!!! PLEASE HELP!! ITS DUE IN 1 HOUR!!!!!!!!!!!!!!

100 POINTS!!!! PLEASE HELP!! ITS DUE IN 1 HOUR!!!!!!!!!!!!!!

Answers

Answer 1
If the scale ratio of two similar triangles is 1/3, that means the corresponding sides of the two triangles are in the same ratio.

If side 'd' of triangle DEF has a length of 4, and the scale ratio of the two triangles is 1/3, then the length of the corresponding side 'a' of triangle ABC can be found as follows:

a/d = 1/3

a = (1/3)d

a = (1/3)4

a = 4/3

Therefore, the length of side 'a' is 4/3.

Related Questions

How many different simple random samples of size 4 can be obtained from a population whose size is 50?

Answers

The number of random samples, obtained using the formula for combination are 230,300 random samples

What is a random sample?

A random sample is a subset of the population, such that each member of the subset have the same chance of being selected.

The formula for combinations indicates that we get;

nCr = n!/(r!*(n - r)!), where;

n = The size of the population

r = The sample size

The number of different simple random samples of size 4 that can be obtained from a population of size 50 therefore can be obtained using the above equation by plugging in r = 4, and n = 50, therefore, we get;

nCr = 50!/(4!*(50 - 4)!) = 230300

The number of different ways and therefore, the number of random samples of size 4 that can be selected from a population of 50 therefore is 230,300 random samples.

Learn more on combination here: https://brainly.com/question/25718474

#SPJ1

Q5. Compute the trapezoidal approximation for | Vx dx using a regular partition with n=6.

Answers

The trapezoidal approximation for | Vx dx using a regular partition with n=6 is approximately 0.1901.

How to find the trapezoidal approximation for a function?

To compute the trapezoidal approximation for | Vx dx using a regular partition with n=6, we can use the formula:

Tn = (b-a)/n * [f(a)/2 + f(x1) + f(x2) + ... + f(xn-1) + f(b)/2]

where Tn is the trapezoidal approximation, n=6 is the number of partitions, a and b are the limits of integration, and x1, x2, ..., xn-1 are the partition points.

In this case, we have | Vx dx as the function to integrate. Since there are no given limits of integration, we can assume them to be 0 and 1 for simplicity.

So, a=0 and b=1, and we need to find the values of f(x) at x=0, 1/6, 2/6, 3/6, 4/6, and 5/6 to use in the formula.

We can calculate these values as follows:

f(0) = | V0 dx = 0

f(1/6) = | V1/6 dx = V(1/6) - V(0) = sqrt(1/6) - 0 = 0.4082

f(2/6) = | V2/6 dx = V(2/6) - V(1/6) = sqrt(2/6) - sqrt(1/6) = 0.2317

f(3/6) = | V3/6 dx = V(3/6) - V(2/6) = sqrt(3/6) - sqrt(2/6) = 0.1547

f(4/6) = | V4/6 dx = V(4/6) - V(3/6) = sqrt(4/6) - sqrt(3/6) = 0.1104

f(5/6) = | V5/6 dx = V(5/6) - V(4/6) = sqrt(5/6) - sqrt(4/6) = 0.0849

Now we can substitute these values in the formula and simplify:

T6 = (1-0)/6 * [0/2 + 0.4082 + 0.2317 + 0.1547 + 0.1104 + 0.0849/2]
   = 0.1901

Therefore, the trapezoidal approximation for | Vx dx using a regular partition with n=6 is approximately 0.1901.

Learn more about the trapezoidal approximation.

brainly.com/question/29159712

#SPJ11

If a woman making $29,000 a year receives a cost-of-living increase of 2. 6%, what will her new salary be?

Answers

To find the new salary after a 2.6% increase, we need to add 2.6% of the original salary to the original salary.

2.6% of $29,000 can be calculated as:

(2.6/100) x $29,000 = $754

Therefore, the new salary will be:

$29,000 + $754 = $29,754

So the woman's new salary will be $29,754.

To Know more about refer new salary  here

https://brainly.com/question/29103377#

#SPJ11

we introduced wind chill as a way of calculating the apparent temperature a person would feel as a function of the real air temperature, I, and V in
mph. Then the wind chill (i.e., the apparent temperature) is:
W(T, V) = (35.74 + 0.6215T - 35.75V^0.16) / 0.4275TV^0.16
(a) By calculating the appropriate partial derivative, show that
increasing T always increases W. (
b) Under what conditions does increasing V decrease W? Your
answer will take the form of an inequality involving T.
(c) Assuming that W should always decrease when V is in- creased, use your answer from (b) to determine the largest domain in which this formula for W can be used.

Answers

a) The partial derivative of W with respect to T is always positive, which means that increasing T always increases W.

b) Increasing V decreases W if V is greater than

[tex]((0.8T - 0.6215) / 5.71)^{(1/0.16)} .[/tex]

c) The largest domain in which the inequality derived in (b) holds true is:

T > 0.7769. This means that the wind chill formula can be used only for

air temperatures above 0.7769 degrees Fahrenheit.

(a) To show that increasing T always increases W, we need to calculate the partial derivative of W with respect to T and show that it is always positive.

∂W/∂T = [tex]0.6215/0.4275V^{0.16} - (35.75V^{0.16})/0.4275TV^{0.16}^{2}[/tex]

Simplifying this expression, we get:

∂W/∂T = [tex]1.44(0.6215 - 0.0275V^{0.16T}) / V^{0.16}T^{2}[/tex]

Since 1.44 and[tex]V^{0}.16T^{2}[/tex] are always positive, the sign of the partial derivative depends on the sign of[tex](0.6215 - 0.0275V^{0.16T} ).[/tex]

Since 0.0275 is always positive and [tex]V^{0.16T}[/tex] is also always positive, we see that [tex](0.6215 - 0.0275V^{0.16T} )[/tex] is always positive.

(b) To find the conditions under which increasing V decreases W, we need to calculate the partial derivative of W with respect to V and show that it is always negative.

∂W/∂V = [tex](-35.750.16V^{(-0.84)} (35.74+0.6215T-35.75V^{0.16} )-0.6215V^{(-0.16} ))/0.4275TV^{(0.16)}[/tex]

Simplifying this expression, we get:

∂W/∂V = [tex]-0.16(0.6215+5.71V^{0.16-0.8T} ) / TV^{0.84}[/tex]

The sign of the partial derivative depends on the sign of [tex](0.6215+5.71V^{0.16-0.8T} ).[/tex]

If [tex]0.6215+5.71V^{0.16-0.8T} < 0[/tex], then the partial derivative is negative and increasing V decreases W.

Solving this inequality for V, we get:

[tex]V > ((0.8T - 0.6215) / 5.71)^{(1/0.16)}[/tex]

(c) Assuming that W should always decrease when V is increased, we need to find the largest domain in which the inequality derived in (b) holds true.

Since the expression inside the parentheses must be positive for a real solution, we have:

0.8T - 0.6215 > 0

T > 0.7769

for such more question on partial derivative

https://brainly.com/question/25573309

#SPJ11

In one month 382 adults and 65 children stayed in a hotel. How many people are there altogether?

Answers

In one month, a total of 447 people stayed at the hotel.

In one month, a hotel had 382 adults and 65 children staying as guests.

To find out the total number of people who stayed at the hotel, we simply need to add the number of adults and children together.

In one month, a total of 447 people (382 adults and 65 children) stayed at the hotel.

Overall, this problem is a simple example of addition in action. By adding the number of adults and children together, we can determine the total number of people who stayed in the hotel.

To know more about addition, refer to the link below:

https://brainly.com/question/29464370#

#SPJ11

Julia works at a music store. One of her jobs is to stock new CDs on the shelf. A recent order arrived with 215 classical CDs, 125 jazz CDs, and 330 soft rock CDs. How many groups will Julia use to arrange all of the CDs?

Answers

Julia will use 10 groups to arrange all of the CDs.

To determine the number of groups Julia will use to arrange all of the CDs, we need to find the greatest common divisor of the numbers 215, 125, and 330.

First, we can check if any of the numbers are divisible by 5:

215 is not divisible by 5

125 is divisible by 5 (125 ÷ 5 = 25)

330 is divisible by 5 (330 ÷ 5 = 66)

Now we divide 125 and 330 by 5:

125 ÷ 5 = 25

330 ÷ 5 = 66

Next, we check if any of the numbers are divisible by 2:

25 is not divisible by 2

66 is divisible by 2 (66 ÷ 2 = 33)

Now we divide 66 by 2:

66 ÷ 2 = 33

Therefore, the greatest common divisor of 215, 125, and 330 is 5 × 2 = 10.

Learn more about arrangement at https://brainly.com/question/24260660

#SPJ11

Please Help Quick!!!!

Answers

JK = 360° - KL - LM - MJ => JK = 360° - 294° = 66°;
∠︎JML = 1/2 (JK + KL), ∠︎JML = 4b, so 4b = 1/2 (66+110), 4b = 1/2*176 => b = 22°
∠︎MLK = 1/2 (MJ + JK), ∠︎MLK = 3a, so 3a = 1/2 (54 + 66), 3a = 1/2*120 => a = 20°

Answer: a = 20°; b = 22°. :)

An electrical voltage signal is given by the equation V t = + 12sin(5 2), where V is measured in volts and t in milliseconds. Find a general formula that gives all the times when the voltage will be 0. Write your formula in terms of p. (Notice that the answer to this problem is a sequence, not a series. )

Answers

A general formula that gives all the times when the voltage will be 0 is t = ±√((pπ)/10)

To find the general formula for the times when the voltage will be 0, we need to analyze the given equation: V(t) = 12sin(5t²). Since V(t) represents the voltage at time t, we want to find the values of t for which V(t) = 0. This will occur when the sine function equals 0.

The sine function, sin(x), is equal to 0 when its argument x is a multiple of π. Mathematically, this can be expressed as:

sin(x) = 0 ⟺ x = nπ, where n is an integer (0, ±1, ±2, ...)

In our case, the argument of the sine function is 5t². Thus, we want to find values of t for which:

5t² = nπ, where n is an integer.

Now, let's solve this equation for t:

t² = (nπ)/5

t = ±√((nπ)/5)

Since the question asks for a formula in terms of p, let's define p as an integer such that p = 2n (n can be any integer). Thus, the formula becomes:

t = ±√((pπ)/10)

This formula represents the general sequence of times t (in milliseconds) when the voltage V(t) will be equal to 0. Here, p is an even integer (0, ±2, ±4, ...) representing different instances when the voltage is zero.

Know more about general formula here:

https://brainly.com/question/2492579

#SPJ11

Y=1/3x-3 and y=-x+1 what the answer pls i really need this

Answers

The point of intersection between the two given equations is (3, -2).

The problem is asking to find the point of intersection between the two given equations:

y = (1/3)x - 3 ............... (equation 1)

y = -x + 1 ............... (equation 2)

To solve for the intersection point, we can set the two equations equal to each other:

(1/3)x - 3 = -x + 1

Simplifying and solving for x:

(1/3)x + x = 1 + 3

(4/3)x = 4

x = 3

Now that we know x = 3, we can substitute it into either of the two original equations to find y:

Using equation 1: y = (1/3)x - 3 = (1/3)(3) - 3 = -2

Using equation 2: y = -x + 1 = -(3) + 1 = -2

Therefore, the intersection point is (3, -2).

To know more about intersection point, refer to the link below:

https://brainly.com/question/11632250#

#SPJ11

Question 5 of 5

nguyen has the following cans of soup in his pantry:

•4 cans of chicken noodle soup
• 2 cans of tomato soup
• 3 cans of vegetable soup
•3 cans of potato soup

he randomly chooses a can of soup for lunch. what is the probability that he will choose chicken noodle soup?

a. 1/2
b. 1/4
c. 1/6
d. 1/4

please explain how you got the answer as well

Answers

The probability that Nguyen will choose a can of chicken noodle soup is 1/3. Therefore, the correct option is B.

To find the probability, you need to divide the number of favorable outcomes (chicken noodle soup cans) by the total number of possible outcomes (total cans of soup). Hence,

1. Count the total number of cans of soup: 4 chicken noodle + 2 tomato + 3 vegetable + 3 potato = 12 cans in total.

2. Count the number of chicken noodle soup cans: 4 cans.

3. Divide the number of chicken noodle soup cans (4) by the total number of cans (12): 4/12.

4. Simplify the fraction: 4/12 can be simplified to 1/3.

Therefore, the probability of choosing a chicken noodle soup is option B: 1/3.

Note: The question is incomplete. The complete question probably is: Nguyen has the following cans of soup in his pantry: 4 cans of chicken noodle soup; 2 cans of tomato soup; 3 cans of vegetable soup; 3 cans of potato soup. He randomly chooses a can of soup for lunch. What is the probability that he will choose chicken noodle soup? a. ½ b. 1/3 c. 1/6 d. ¼.

Learn more about Probability:

https://brainly.com/question/25839839

#SPJ11

A foam cylinder, with a diameter of 3 inches and height of 4 inches, is carved into the shape of a cone. what is the


maximum volume of a cone that can be carved? round your answer to the hundredths place.

Answers

The maximum volume of a cone that can be carved from the foam cylinder is approximately 9.42 cubic inches.

Given data:

diameter = 3 inches

radius = r = 3 ÷ 2 = 1.5 inches

height = 4 inches

We need to find the maximum volume of a cone that can be carved from the foam cylinder. The volume of a cone is given by the formula:

V = [tex]\frac{1}{3}\pi r^2h[/tex]

where:

V = volume

r = radius of the base

h = height

π = 3.14.

Substituting the r, h, and  π values in the formula, we get:

V = [tex]\frac{1}{3}[/tex]π[tex]r^2[/tex]h

V = [tex]\frac{1}{3}[/tex] × π × (1.5)² ×(4)

V =  [tex]\frac{1}{3}[/tex] × π × 2.25 ×(4)

V = 3 π

V = 9.42 cubic inches

Therefore, the maximum volume of a cone is 9.42 cubic inches.

To learn more about the volume of a cone:

brainly.com/question/31211180

#SPJ4

If α and β are the zeros of x^2-x+k, and 3α+2β=20, find k.

Answers

The solution of the given problem of quadratic equation comes out to be K thus has a value of 63/4.

What is quadratic equation?

Regression modelling uses the polynomial solutions x = ax² + b + c=0 for one-variable equations. The First Principle of Algebra states that there can only be one solution because it has an extra order. There are both simple and complex solutions available. As the name suggests, a "non-linear formula" has four variables. This implies that there may only be one squared word. In the equation "ax² + bx + c = 0.

Here,

We know that if and are the zeros of the quadratic equation x²-x+k then:

=> α + β = 1

=> αβ = k

Additionally, we are told that 3 + 2 = 20.

We may find as = 1 - by using the equation + = 1.

By replacing this expression for in terms of in the formula k = a, we obtain:

=> (1 - β)β = k

=> β² - β + k = 0

=> 3α + 2(1 - α) = 20

=> α = 6 - 2β/3

=> (6 - 2β/3)²- (6 - 2β/3) + k = 0

=> 4β² - 36β + 72 + 3k = 0

=> 3(6 - 2β/3) + 2β = 20

=> 4β/3 = 2

=> β = 3/2

=> 4(3/2)² - 36(3/2) + 72 + 3k = 0

When we simplify and find k, we obtain:

=>k = 63/4

K thus has a value of 63/4.

To know more about quadratic equation visit:

brainly.com/question/30098550

#SPJ1

Janice bought a new car. the total amount she needs to borrow is $35,000 . she plans on taking out a 5-year loan at an apr of 4%. what is the monthly payment ?

Answers

Janice's monthly payment for her 5-year, 4% APR car loan would be $626.38.

To calculate Janice's monthly payment, we first need to use the formula for calculating loan payments:

Loan Payment = Loan Amount / Discount Factor


The discount factor can be calculated using the following formula:

Discount Factor = [(1 + r)ⁿ] - 1 / [r(1 + r)ⁿ]

Where r is the monthly interest rate (4% divided by 12 months = 0.00333) and n is the total number of payments (5 years x 12 months = 60).


Plugging in the values, we get:

Discount Factor = [(1 + 0.00333)⁶⁰] - 1 / [0.00333(1 + 0.00333)⁶⁰] = 55.8389

Now, we can calculate Janice's monthly payment:

Loan Payment = $35,000 / 55.8389 = $626.38

Know more about loan here:

https://brainly.com/question/11794123

#SPJ11

If you were to randomly survey 20 people at 50 random high schools would this be a random sample? Why or why not?

Answers

Yes, if you were to randomly survey 20 people at 50 random high schools, it would be considered a random sample because the process involves randomly selecting people from randomly selected high schools, which prevents selection bias..

A random sample is a subset of a population in which every individual has an equal chance of being selected. In this case, the population is the students at the high schools.

By randomly selecting the 50 high schools, you ensure that each school has an equal opportunity to be part of the sample. This helps to prevent selection bias, as no specific schools are deliberately chosen. Moreover, by surveying 20 random people within each selected school, you further eliminate bias, as each student at the school has an equal chance of being selected for the survey.

This random sampling method is beneficial because it helps to obtain a more representative sample of the larger population of high school students. By including diverse schools and students, the survey results can provide more accurate and generalizable insights.

However, it is important to note that even with random sampling, there may still be some limitations, such as sampling error or non-response bias. To minimize these, it is essential to ensure that the sample size is large enough and that survey procedures are properly executed.

Learn more about random sample here: https://brainly.com/question/29444380

#SPJ11

Let a = (- 2, 4, 2) and b = (1, 0, 3).
Find the component of b onto a

Answers

The component of b onto a is (-1/3, 2/3, -1/3).

To find the component of b onto a, we first need to find the projection of b onto a. The projection of b onto a is given by the formula:

proj_a(b) = (b dot a / ||a||^2) * a

where dot represents the dot product and ||a|| represents the magnitude of vector a.

We can calculate the dot product of a and b as follows:

a dot b = (-2*1) + (4*0) + (2*3) = 4

We can calculate the magnitude of a as follows:

||a|| = sqrt((-2)^2 + 4^2 + 2^2) = sqrt(24) = 2sqrt(6)

Now we can plug these values into the formula for the projection of b onto a:

proj_a(b) = (b dot a / ||a||^2) * a
proj_a(b) = (4 / (2sqrt(6))^2) * (-2, 4, 2)
proj_a(b) = (4 / 24) * (-2, 4, 2)
proj_a(b) = (-1/3, 2/3, -1/3)

Finally, the component of b onto a is simply the projection of b onto a:
comp_a(b) = (-1/3, 2/3, -1/3)
learn more about components here: brainly.com/question/29306131

#SPJ11

Your doing practice 4

Answers

For a snowboard cost that was reduced by 40% by the end of the season, the snowboard cost $450 when it was new.

How to find original cost?

To find the original cost of the snowboard, let the original price of the snowboard be x.

After a 40% reduction in price, the snowboard costs 60% of its original price, therefore the cost remaining percentage of the original prize times the reduction percentage = the price after reduction:

100% - 40% = 60%

60/100 = 0.6

0.6x = 270

Solving for x to get:

x = 270/0.6 = 450

Therefore, the original price of the snowboard was $450.

Find out more on original price here: https://brainly.com/question/26008313

#SPJ1

Sand falls from an overhead bin and accumulates in a conical pile with a radius that is alwavs two times its heiaht. Suppose the height of the pile increases at a rate of 2 cm/s when the pile is 11 cm high. At what rate is the sand leaving the bin at that instant?

Answers

To solve this problem, we need to use related rates. Let's start by drawing a diagram:

```
        /\
       /  \
      /    \
     /      \
    /        \
   /__________\
```

We know that the radius of the conical pile is always two times its height, so we can label the diagram as follows:

```
        /\
       /  \
      /    \
     /      \
    /        \
   /__________\
  /|    r=2h   \
 / |___________\
```

Now we need to find an equation that relates the height of the pile to its radius. We can use the formula for the volume of a cone:

```
V = (1/3)πr^2h
```

We want to solve for h in terms of r:

```
V = (1/3)πr^2h
3V/πr^2 = h
```

Now we can differentiate both sides of this equation with respect to time:

```
d/dt (3V/πr^2) = d/dt h
0 = (3/πr^2) dV/dt - (2/πr^3) dr/dt
```

We're given that the height is increasing at a rate of 2 cm/s when the pile is 11 cm high, so we know that:

```
dh/dt = 2 cm/s
h = 11 cm
```

We want to find the rate at which sand is leaving the bin, which is given by `dV/dt`. We can solve for this using the equation we derived:

```
0 = (3/πr^2) dV/dt - (2/πr^3) dr/dt
dV/dt = (2/3)πr^2 (dh/dt) / r
```

Now we just need to plug in the values we know:

```
dh/dt = 2 cm/s
h = 11 cm
r = 2h = 22 cm

dV/dt = (2/3)π(22)^2 (2) / 22
dV/dt = 264π/3
```

So the rate at which sand is leaving the bin when the pile is 11 cm high is `264π/3 cm^3/s`.

To solve this problem, we can use the relationship between the radius and height of the conical pile, as well as the given rate of height increase.

Since the radius (r) is always two times the height (h), we have r = 2h. The volume (V) of a cone is given by the formula V = (1/3)πr^2h. We can substitute r with 2h, so V = (1/3)π(2h)^2h.

Now, let's differentiate both sides with respect to time (t):

dV/dt = (1/3)π(8h^2)dh/dt

When the height is 11 cm, the rate of height increase (dh/dt) is 2 cm/s. We can substitute these values into the equation:

dV/dt = (1/3)π(8(11)^2)(2)

Solving for dV/dt:

dV/dt ≈ 2046.92 cm³/s

At that instant, the sand is leaving the bin at a rate of approximately 2046.92 cm³/s.

Learn more about radius here: brainly.com/question/30106091

#SPJ11

The vector v and its initial point are given. Find the terminal point.
v = (3, -6, 6)
Initial point: (0, 6, 1)
(x,y,z) = ______

Answers

The terminal point (x, y, z) of vector v with the given initial point is (3, 0, 7).

To find the terminal point of vector v with initial point given, you can follow these steps:

Add the vector components to the coordinates of the initial point.

The vector v is given as (3, -6, 6) and the initial point is (0, 6, 1).

Add the x-components: 0 + 3 = 3

Add the y-components: 6 + (-6) = 0

Add the z-components: 1 + 6 = 7

The terminal point (x, y, z) of vector v with the given initial point is (3, 0, 7).

for such more question on terminal point

https://brainly.com/question/25768191

#SPJ11

Solve the problem by integration 6x where x is the distance The force Fin N) applied by a stamping machine in making a certain computer part is F- x2.9.24 (in cm) through which the force acts. Find the work done by the force

Answers

To find the work done by the force, we need to integrate the product of the force and the distance over the range of x.

Given that the force is F(x) = x^2 * 9.24 N and the distance is x, we have:

Work = ∫ F(x) * dx
     = ∫ (x^2 * 9.24) * dx
     = 9.24 ∫ x^2 dx
     = 9.24 * [x^3 / 3]

Evaluating the integral between the limits of 0 and 6 (since the distance is given as x), we get:

Work = 9.24 * [(6^3 / 3) - (0^3 / 3)]
    = 9.24 * (72)
    = 665.28 Joules

Therefore, the work done by the force is 665.28 Joules.

To find the work done by the force, we need to calculate the integral of the force function with respect to distance. Given the force function F(x) = 6x, and the distance x ∈ [0, 2.9], we can set up the integral as follows:

Work = ∫(6x dx) from 0 to 2.9

To find the integral, we'll apply the power rule for integration:

∫(6x dx) = 3x^2 + C

Now, we need to evaluate the definite integral from 0 to 2.9:

Work = (3 * (2.9)^2) - (3 * (0)^2) = 3 * (8.41) = 25.23 N·m

So, the work done by the force is approximately 25.23 N·m.

Learn more about integration here: brainly.com/question/18125359

#SPJ11

Bill needs a table to display his model train set. the table needs to be 2 times longer and 3 inches shorter
than it is wide and have an area of 4,608 square inches. what does x need to be to fit these requirements?
2x-3

Answers

2x - 3 would be 92 - 3 = 89 inches, which is the length of the table

How to find the length?.

The table needs to be 2 times longer than it is wide, so its length is 2 times its width, or 2x.

The table also needs to be 3 inches shorter than it is wide, so its width is x + 3 inches.

The area of the table is 4,608 square inches, so we can set up an equation:

2x(x + 3) = 4,608

Simplifying this equation:

2x²+ 6x = 4,608

Dividing both sides by 2:

x²+ 3x - 2,304 = 0

We can solve for x using the quadratic formula:

x = (-b ±  √(b² - 4ac)) / 2a

In this case, a = 1, b = 3, and c = -2,304. Substituting these values:

x = (-3 ±  √(3² - 4(1)(-2,304))) / 2(1)

Simplifying:

x = (-3 ±  √(9 + 9,216)) / 2

x = (-3 ±  √(9,225)) / 2

x = (-3 ± 95) / 2

x = 46 or x = -49

Since the width of the table cannot be negative, we can ignore the negative solution. Therefore, x needs to be 46 inches to fit the given requirements.

The length of the table is 2x, or 2(46) = 92 inches, and the width is x + 3, or 46 + 3 = 49 inches. The area is 92 * 49 = 4,508 square inches, which matches the given area requirement.

So, 2x - 3 would be 92 - 3 = 89 inches, which is the length of the table.

Learn more about Length

brainly.com/question/9842733

#SPJ11

You can use indirect measurement to estimate the height of a building. First, measure your distance from the base of the building and the distance from the ground to a point on the building that you are looking at. Maintaining the same angle of sight, move back until the top of the building is in your line of sight. Answer both A and B

Answers

The building is perfectly vertical and the observer is at a consistent height above the ground.

A) Explain how the method of indirect measurement can be used to estimate the height of a building?

The method of indirect measurement can be used to estimate the height of a building by using similar triangles and the principles of proportionality. First, the distance from the base of the building to the observer and the distance from the ground to a known point on the building are measured. By maintaining the same angle of sight, the observer can move back until the top of the building is in their line of sight. At this point, a second pair of measurements is taken: the distance from the new location to the base of the building and the height of the visible portion of the building from the ground. By using the principles of proportionality between similar triangles, the height of the entire building can be estimated.

Specifically, the ratio of the height of the known point on the building to the distance from the observer to that point can be set equal to the ratio of the height of the entire building to the distance from the observer to the base of the building. This proportion can be solved algebraically to find the estimated height of the entire building.

B) What are some potential sources of error or inaccuracy in this method of estimation?

There are several potential sources of error or inaccuracy in this method of estimation. One major source of error is the assumption that the two triangles being compared are similar. If the angle of sight is not maintained exactly or if the ground is not perfectly level, the triangles may not be similar and the estimated height may be incorrect.

Additionally, the accuracy of the estimated height depends on the accuracy of the distance measurements. If the distances are not measured precisely, the estimated height will be proportionally less accurate.

Finally, this method assumes that the building is perfectly vertical and that the observer is at a consistent height above the ground. If the building is not perfectly vertical or the observer's height above the ground changes, this can also affect the accuracy of the estimated height.

Learn more about measurements.

brainly.com/question/15208060

#SPJ11

Find the area of the shaded region. Round to final answer to the nearest tenth for this problem.

Answers

Answer:

(1/6)π(4^2) - (1/2)(2√3)(4)

= 8π/3 - 4√3 = about 1.4

To find the quotient of 4. 082 and 10,000, move the decimal point in 4. 082


Choose.


places to the


Choose.

Answers

The Quotient of 4.082 and 10,000 is 0.0004082.

Find the qoutient of  4. 082 and 10,000?

To find the quotient of 4.082 and 10,000, we need to move the decimal point in 4.082 four places to the left, since there are four zeros in 10,000.

So, we get:

4.082 ÷ 10,000 = 0.0004082 is the answer.

Explanation.

To find the quotient of 4.082 and 10,000, we need to divide 4.082 by 10,000. When we divide by a number that is a power of 10, we can simplify the calculation by moving the decimal point to the left as many places as there are zeros in the divisor.

Learn more about decimal:

brainly.com/question/31878113

#SPJ11

The Willis tower in Chicago is the second tallest building in the United States in his topped by a high intent. A surveyor on the ground makes the following measurements. The angle of elevation from her position to the top of the building is 34°. The distance from her position to the top of the building is 2595 feet. The distance from her position to the top of the antenna is 2760 feet. how far away from the base of the building is the surveyor located? How tall is the building? What is the angle of elevation from the surveyor to the top of the antenna? How tall is the antenna?

Answers

The surveyor is located about 239.6 feet away from the base of the Willis Tower.

The height of the Willis Tower is 165 feet.

The angle of elevation from the surveyor to the top of the antenna is about 3.41°.

The height of the antenna is about 135.9 feet.

How to solve for the angle of elevation

Let's call the distance from the surveyor to the base of the Willis Tower "x", and let's call the height of the Willis Tower "h".

We can use trigonometry to solve for x and h. First, let's find x:

tan(34°) = h/x

x = h/tan(34°)

Now we can use the distance from the surveyor to the top of the building to solve for h:

h + 2595 = 2760

h = 165

So the height of the Willis Tower is 165 feet. Now we can solve for x:

x = 165/tan(34°) ≈ 239.6 feet

So the surveyor is located about 239.6 feet away from the base of the Willis Tower.

To find the angle of elevation from the surveyor to the top of the antenna, we can use trigonometry again:

tan(θ) = h/2760

θ = tan^(-1)(h/2760)

θ ≈ 3.41°

So the angle of elevation from the surveyor to the top of the antenna is about 3.41°.

Finally, we can use the height of the Willis Tower and the distance from the surveyor to the top of the antenna to solve for the height of the antenna:

tan(34°) = (h + a)/2760

a ≈ 135.9

So the height of the antenna is about 135.9 feet.

Read more on angle of elevation here:https://brainly.com/question/88158

#SPJ1

Val needs to find the area enclosed by the figure. The figure is made by attaching semicircles to each side of a 56m​-by-56m square. Val says the area is 1,787.52m. Find the area enclosed by the figure. Use 3.14 for . What error might have​ made?

Answers

Val's calculation of 1,787.52 m² is incorrect.

What is area of semicircle?

The area of a semicircle is half the area of the corresponding circle. If r is the radius of the semicircle, then the area of the semicircle is:

A(semicircle) = (1/2) π r²

To find the area enclosed by the figure, we need to add the areas of the square and the four semicircles.

The area of the square is:

[tex]A_{square}[/tex] = (56 m)² = 3,136 m²

The area of one semicircle is half the area of the corresponding circle, and the radius of the circle is equal to the side length of the square. Therefore, the area of one semicircle is:

[tex]A_{semicircle}[/tex] = (1/2) π (56/2)²= 1,554.56 m²

The total area enclosed by the figure is:

[tex]A_{total}[/tex] = [tex]A_{square}[/tex]+ 4 [tex]A_{semicircle}[/tex] = 3,136 + 4(1,554.56) = 9,901.44 m²

Therefore, Val's calculation of 1,787.52 m² is incorrect.

To know more about areas visit:

brainly.com/question/16952186

#SPJ9

Question:

Val needs to find the area enclosed by the figure. The figure is made by attaching semicircles to each side of a 56m​-by-56m square. Val says the area is 1,787.52m. Find the area enclosed by the figure. Use 3.14 for π. What error might have Val made?

Can someone please help me ASAP? It’s due tomorrow. I will give brainliest if it’s correct.

Answers

The probability values when calculated are

P(2 numbers greater than 3) = 0.1P(2 even numbers) = 0.4P(2 cards with same numbers) = 0P(1 card is 3) = 0.3

Evaluating the probability values

From the question, we have the following parameters that can be used in our computation:

Cards = {1, 2, 3, 4, 5}

Selecting two cards without replacement

So, we have

P(2 numbers greater than 3) = 2/5 * 1/4

P(2 numbers greater than 3) = 0.1

P(2 even numbers) = 2/5 * 4/4

P(2 even numbers) = 0.4

P(2 cards with same numbers) = 1/5 * 0/4

P(2 cards with same numbers) = 0

P(1 card is 3) = 2 * 1/5 * 3/4

P(1 card is 3) = 0.3

Read more about probability at

https://brainly.com/question/251701

#SPJ1

the variables x and y vary inversely. use the given values to write an equation relating i and y. then find y when i = i= 5, y = -4 an equation is y= when i = 3, y = 5

please help me! ​

Answers

When i (x) = 3, the value of y is approximately -6.67. The equation relating i (x) and y in this inverse variation is xy = -20.

The given information states that the variables x and y vary inversely. To write an equation relating i (assuming it's x) and y, we first need to understand the concept of inverse variation.

In inverse variation, the product of the two variables remains constant. Mathematically, it can be represented as xy = k, where k is the constant of variation. We are given the values i (x) = 5 and y = -4. Using these values, we can find the constant of variation, k:

5 * -4 = k
k = -20

Now that we have the constant of variation, we can write the equation relating i (x) and y as:

xy = -20

Next, we want to find the value of y when i (x) = 3. We can use the equation we just derived to find the value of y:

3 * y = -20

Now, we can solve for y:

y = -20 / 3
y ≈ -6.67

So, when i (x) = 3, the value of y is approximately -6.67. The equation relating i (x) and y in this inverse variation is xy = -20.

To know more about inverse variation, visit:

https://brainly.com/question/11592410#

#SPJ11

Which equation models this relationship?

Answers

An equation that models this relationship include the following: C. t = 5d.

What is a proportional relationship?

In Mathematics, a proportional relationship produces equivalent ratios and it can be modeled or represented by the following mathematical equation:

y = kx

Where:

k is the constant of proportionality.y represent the distance.x represent the time.

Next, we would determine the constant of proportionality (k) for the data points contained in the table as follows:

Constant of proportionality, k = y/x = t/d

Constant of proportionality, k = 5/1

Constant of proportionality, k = 5.

Therefore, the required equation is given by;

t = kd

t = 5d

Read more on proportional relationship here: brainly.com/question/28350476

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

Find an equation of the circle drawn below.

Answers

The equation of the circle in this problem is given as follows:

x² + y² = 49.

What is the equation of a circle?

The equation of a circle of center [tex](x_0, y_0)[/tex] and radius r is given by:

[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]

The radius of a circle represents the distance between the center of the circle and a point on the circumference of the circle. As this distance is of 7 units, it is then given as follows:

r = 7 -> r² = 49.

The center of the circle is at the origin, hence:

[tex](x_0, y_0) = (0,0)[/tex]

Thus the equation of the circle is given as follows:

x² + y² = 49.

More can be learned about the equation of a circle at https://brainly.com/question/1506955

#SPJ1

Solve the equation 2^(x-2)+2^3-x=3. Also prove that the roots also satisfies 4^(x)-6*2^(x+1)+32=0

Answers

The roots of the given equation [tex]2^(^x^-^2^) + 2^(^3^-^x^) = 3[/tex]also satisfy the equation [tex]4^(^x^) - 6*2^(^x^+^1^) + 32 = 0.[/tex]

How to find the roots of equation?

To find the roots of equation [tex]2^(^x^-^2^) + 2^(^3^-^x^) = 3,[/tex] we can substitute [tex]y = 2^(^x^-^2^)[/tex]to get:

[tex]y + 2^(^5^-^x^)^/^y = 3[/tex]

Multiplying both sides by y, we get:

[tex]y^2 + 2^(^5^-^x^) = 3y[/tex]

Substituting y = 2^(x-2), we get:

[tex]2^(^2^x^-^8^) + 2^(^5^-^x^) = 3 * 2^(^x^-^2^)[/tex]

Multiplying both sides by 2^8, we get:

[tex]4(2^x) + 32 = 768(2^(^2^-^x^))[/tex]

Simplifying, we get:

[tex]4(2^x) - 768(2^-^x) + 32 = 0[/tex]

Dividing both sides by 4, we get:

[tex]2^x - 192(2^-^x) + 8 = 0[/tex]

Multiplying both sides by [tex]2^x[/tex], we get:

[tex]4^x - 192 + 2^x = 0[/tex]

Adding 192 to both sides, we get:

[tex]4^x + 2^x - 192 = 0[/tex]

This is the same as the given equation [tex]4^(^x^) - 6*2^(^x^+^1^) + 32 = 0.[/tex]

Therefore, we have shown that the roots of the given equation [tex]2^(^x^-^2^) + 2^(^3^-^x^) = 3[/tex] also satisfy the equation [tex]4^(^x^) - 6*2^(^x^+^1^) + 32 = 0.[/tex]

Learn more about roots

brainly.com/question/16932620

#SPJ11

Other Questions
1 The Shake Shop sells their drinks in cone-shaped cups that are 7 inches tall The small size has a diameter of 3 inches, and the large size has a diameter of 5 inches. Use 3. 14 for a 7 in a What is the volume of the small shake to the nearest tenth? Which answer should go in blank 27? I and my friendsMy friends and meMy friends and I The note below depict a triangle prism. What is the total surface area of the prism?How do you set it up and solve? Vanna is tempted to shoplift a gold necklace even though she has negative feelings about shoplifting. vanna is least likely to steal the merchandise if:. ivanhoe oil company is considering investing in a new oil well. it is expected that the oil well will increase annual revenues by $124,600 and will increase annual expenses by $85,000 including depreciation. the oil well will cost $430,000 and will have a $10,000 salvage value at the end of its 10-year useful life. calculate the annual rate of return. Early seed plants were pollinated by: Group of answer choices bees. Butterflies. Wind. Birds. Still water Methyl orange is an indicator that turns pink when the pH is below 5 and yellow when the pH is 5 or above. What color would it turn in a 1.2 M solution of KOH?redpinkorangeyellow (a) discuss the benefits and drawbacks of sending out questionnaires tomembers of the company Write the equation to a quintic with double roots 4 and 2, that goes through the origin as well as (4, 4). how many dams were completed between 1930 and 1970 that were over three feet? AP calc please help me Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.When Ellen does 19 push-ups and 8 sit-ups, it takes a total of 43 seconds. In comparison, she needs 48 seconds to do 12 push-ups and 12 sit-ups. How long does it take Ellen to do each kind of exercise?It takes Ellen _ seconds to do a push-up and _seconds to do a sit-up.Thank you : What is the MOST likely purpose of the contrast between the descriptions of Zenith and Floral Heights? when and where the incarnation of our lord jesus happened? A sample of diamagnetic material is initially at rest in a uniform magnetic field. if no other forces are present, how will the sample move Do you agree or disagree with the following statement?There was never a real chance of nuclear war during the Cold War.An optional way you may start your response is:I (agree/disagree) with this statement because _____. Deimos, a satellite of Mars, has an average radius of 6.3 km. If the gravitational force between Deimos and a 3.0 kg rock at its surface is 2.5 * 102 N what is the mass of Deimos? At the start of an experiment there are 50 bacteria in a dish. The bacteria is expected to grow at a rate of 220% each day. What is the best prediction for the bacteria population after 8 days? A 983. 6 g sample of antimony undergoes a temperature change of +31. 51 C. The specific heat capacity of antimony is 0. 049 cal/(gC). How many calories of heat were transferred by the sample? The minimum and maximum distances from a point P to a circle are found using the line determined by the given point and the center of the circle. Given the circle defined by (x 3)2 + (y 1)2 = 25 and the point P(3, 9):Line that goes through the center and P(-3,9)